Reaction Attacks Against Several Public-Key
Cryptosystems

Chris Hall', Ian Goldberg?, and Bruce Schneier!

! Counterpane Systems
{hall, schneier}@counterpane.com
101 E. Minnehaha Pkwy
Minneapolis, MN 55419
(612) 832-1098

2 U.C. at Berkeley
iang@cs.berkeley.edu
Soda Hall
Berkeley, CA 94720-1776

Abstract. We present attacks against the McEliece Public-Key Cryp-
tosystem, the Atjai-Dwork Public-Key Cryptosystem, and variants of
those systems. Most of these systems base their security on the apparent
intractibility of one or more problems. The attacks we present do not
violate the intractibility of the underlying problems, but instead obtain
information about the private key or plaintext by watching the reaction
of someone decrypting a given ciphertext with the private key. In the
case of the McEliece system we must repeat the attack for each cipher-
text we wish to decrypt, whereas for the Ajtai-Dwork system we are able
to recover the private key.

Keywords: public-key cryptosystems, lattice-based cryptosystems, error-
correcting codes, Ajtai-Dwork lattice cryptosystem, McEliece.

1 Introduction

In an attempt to design cryptosystems based upon (believed) intractible prob-
lems different from factoring and discrete logarithms, several public-key cryp-
tosystems have been presented, including the two systems in [M78,AD97]. The
first system is based upon the intractibility of decoding an arbitrary error-
correcting code, and the second upon finding the shortest vector in a lattice.
The authors of the former rely upon the fact that the respective problem is
known to be NP-complete. However, it is not known whether the particular
instances used in their cryptosystem are equally difficult to solve. The general
shortest vector problem is known to be NP-hard, but the lattice-based systems
depend on the apparent difficulty of an easier shortest vector lattice problem
(the unique shortest vector lattice problem). We refer the reader to [AD97] for
more details.

In this paper we present attacks against the McEliece Public-Key Cryptosys-
tem (PKC), a McEliece variant [HR88], the Ajtai-Dwork PKC, and a modified
version of the Ajtai-Dwork PKC that appears in [GGH97]. In these attacks an
attacker presents the owner of the private key with a ciphertext that may con-
tain one or more errors (that is, the ciphertext may decrypt to a plaintext which
fails a simple signature or checksum verification). By watching the reaction of
the owner in order to determine whether or not the ciphertext decrypted cor-
rectly, the attacker can usually determine information about the plaintext (in
the McEliece system) or the private key (in the Ajtai-Dwork systems).

We feel that this is a legitimate class of attacks that one must be careful to
guard against when implementing systems that use these ciphers. In the simplest
case one may have a tamper-resistance module (such as a smartcard) which
contains a copy of the secret key. By feeding erroneous ciphertexts to the card,
one may be able to decrypt ciphertexts without the private key or even recover
the private key. In other systems one may have to rely upon social engineering
to finesse the attacks, but that’s a small price if one can recover the private key.
The basic principle behind the attack is that someone’s reaction to a question
often reveals information that they didn’t intend to give.

The organization of our paper is as follows. In section 2 we describe the
McEliece PKC, as well as a variant of it, and attacks against them. In section
3 we describe the original Ajtai-Dwork PKC as presented in [AD97], a modified
version that appears in [GGH97], and attacks against both of these systems.
Finally, in section 4 we discuss the properties of these public-key cryptosystems
which allowed our attacks to work in order to try and give some design criterion
for new public-key cryptosystems so that they will not be vulnerable to the same
sort of attack.

2 McEliece

In [M78], McEliece outlined a public-key cryptosystem based upon error correct-
ing codes. A user chooses a n x k generator matrix G (for a (n, k) error-correcting
code which can correct up to ¢ errors), a k X k non-singular matrix S, a n X n
permutation matrix P, and publishes the matrix G’ = SGP as his public key.
To encrypt a message a user chooses a random vector Z of weight ¢ and sends:

C=MG +Z.
To decrypt the message, the owner of the key computes:
CP'=MSG+ zZP™*

and corrects the t-bit error ZP~! using the known error-correction algorithm.
After that M can be recovered using S~!.

This system, like other systems [HR88,J83,N86], depends on the fact that
in the worst case, decoding an arbitrary error-correcting code is NP-complete
[BMvT78]. It is hoped that G’ represents one of these difficult cases.

Since their introduction, public-key cryptosytems based on error-correcting
codes have largely been of theoretical interest. They require enormous keys in
order to achieve comparible security to currently implemented public-key cryp-
tosystems based on factoring or the discrete logarithm problem. For example,
the purported attack in [KT91] can break a cryptosystem based on a (1024, 654)
BCH code in 60 hours. Such a key would require a 654-kilobit generator matrix
for part of the public key. This would seem to imply that secure keys would re-
quire one or more megabytes of storage for the generator matrix alone. Compare
this to a 1024-bit RSA key which needs only a little more than 1Kb of storage
and provides excellent security.

Large keys aside, error-correcting code cryptosystems have been touted as
a potential saviour of public-key cryptography. These systems are based on the
syndrome-decoding problem which was shown to be NP-complete in [BMvT78].
Other public-key cryptosystems, such as RSA, are based on problems such as
factoring which are only thought to be difficult. It is possible that someone will
discover an efficient factoring algorithm, whereas it would require proving that
P = NP to find an efficient general syndrome-decoding algorithm. Note, NP-
completeness only implies that the worst case is hard to solve. It may be possible
that the instances of problems produced by PKCs such as [M78] are much easier
to solve.

Until recently, the two best attacks against McEliece’s system appear in
[AM87,KT91]. The attack in [AMS87] relies on choosing k bits in an n-bit cipher-
text that do not contain any errors. Given that the ¢ incorrect bits are unknown,
the probability of this event happening is low. However, once it occurs, one can
solve for the message M using an algorithm outlined in the paper.

The attack outlined in [KT91] requires O(n®) operations for an arbitrary
(n, k) code. It determines the error vector for the ciphertext C'. The basic premise
behind the attack is that a polynomial-time algorithm is introduced which will
determine the error pattern for a received vector provided that the error pattern
has weight at most [(d — 1)/2] (where d is the minimum distance of the code).
The discovery of this algorithm does not contradict the NP-completness proof of
[BMvT78] because it only corrects error patterns of weight at most [(d — 1)/2].
If the received vector is further than [(d — 1)/2] from every codeword, then
this algorithm cannot decode the vector to a codeword. Note, while the basic
attack was outlined in [KT91], further information about the attack has failed
to appear. It is possible that the authors were not able to make their attack
scale as they had wished (when they present it, they had only run it against a
toy problem).

An even more recent attack against the McEliece PKC was presented in
[B97]. This attack relied about known linear relationships between two different
ciphertexts (really their underlying plaintexts) in order to determine the error
vectors used in encrypting the plaintexts. The author is quick to point out that
the attack does not “break” the cryptosystem in the sense that it does not
recover the private key, but it is still an interesting attack to note.

In the next subsections, we present a new attack which determines the er-
ror vector using O(n) operations. It is a chosen ciphertext attack and does not
require that the attacker see the resulting plaintext. The attacker only needs
to be able to determine whether the chosen ciphertext had too many errors to
be decoded correctly, or that it decoded to a plaintext other than the plaintext
in question. The former can be distinguished in systems which send some sort
of message indicating that a retransmission is necessary (such as network pro-
tocols). The latter can be distinguished in systems where a randomly chosen
ciphertext has only a low probability of decrypting to a meaningful plaintext. In
those cases we assume that some sort of retransmission request will also be sent.

2.1 Decoding Algorithms

Our attack rests largely upon one premise:

If a (n,k) error-correcting code is used which can correct t or fewer
errors, then a decoder will not attempt to correct a vector which has t+1
OT More errors.

There are several decoders for Reed-Solomon and Goppa codes which meet this
criterion, including those described in [B73,P75,SKHN76]. A common compo-
nent of each of these algorithms is that they work to find an error-location
polynomial o(z) of degree at most t. The decoders then determine the roots
of o(z) in order to determine the location of the errors in the received vector
(there is a one-to-one correspondance between the roots and the errors). Because
deg(o(z)) < t, there are at most ¢ roots and hence ¢ errors that can be corrected.
This means that these decoding algorithms are not be capabable of correcting
t 4+ 1 errors.

In principle these error-correcting codes are capable of correcting ¢ 4+ 1 er-
rors in some cases. However, the conventional error-correction algorithms, based
on the Berlekamp-Massey algorithm [B67,B68,M69,P75] and Euclid’s Algorithm
[SKHN74,SKHN76], are not capabable of correcting ¢ + 1 errors, as they are of
the above type. When a decoding algorithm is capable of decoding t+1 errors, we
note that it is often possible to recover part of the permutation matrix P. This
follows by observing which of the permuted error vectors of Hamming-Weight
t + 1 are correctable and then determining the (possibly) unique permutation
matrix P which would produce the permuted error vectors. One simply needs to
observe the probability that bit ¢ will be corrected and match it to a bit in the
distribution on the unpermuted code.

Note, at least one system explicitly states that vectors with more than ¢
errors should be ignored. For example, see [HW92].

2.2 Removing an Error Vector

Suppose that we have a ciphertext C' which we wish to decrypt to its correspond-
ing plaintext M. To find the message, we present an algorithm which allows the

attacker to determine the error vector Z used to encrypt M. We do this by mak-
ing small one-bit modifications to C' until we obtain a ciphertext C’ which either
will not decode at all (it contains ¢ 4+ 1 or more errors) or decrypts to a different
plaintext (contains ¢ or fewer errors, but decodes to the wrong codeword).

Once we obtain such a ciphertext we can flip each bit once in n different

trials, and see whether or not the resulting ciphertext decrypts correctly. If
it does, then we know that we have found an erroneous bit and we keep track of
it. Otherwise we know that the bit is correct. Once all erroneous bits have been
found they can be flipped to produce C — Z.

We now give the algorithms used in full:

Algorithm A: Determining C' (a modified ciphertext with t + 1 errors)

1. Let i =1.

2. Flip bits 1 through i of C to form C".

3. Have C’ decrypted and determine whether or not it decrypted to M. Based
on a comment made in the introduction, this should be possible (we watch
the reaction of the key owner).

4. If ¢’ did not decrypt correctly, halt the procedure and continue onto the
next algorithm. Otherwise, increment i and goto step 2.

This algorithm will halt within 2¢+ 1 steps for in the worst case we will “correct”
the ¢ incorrect bits and introduce ¢t 4+ 1 additional errors (we never correct an
error that we introduce).

Once this algorithm halts we know that we have a vector C’ with exactly
t+ 1 errors. If it had fewer, then the decoder would have succeeded in removing
the errors and decrypting to M. If it had more (¢ + j errors for j > 1), then at
some previous trial we must have had a vector C’ with ¢t + 1 errors (because we
know that C has at most t errors and we made one bit modifications to obtain
C"). However, that vector should not have decrypted to M because that would
violate the known properties of the decoder. Therefore we would have stopped
the procedure sooner. So we must have that C” is a message with exactly ¢ + 1
errors. Note, ¢ < n/2 for these error correction codes.

We then continue with the next algorithm:

Algorithm B: (determining which bits of C' are errors)

Let i = 1.

Flip bit ¢ of C’ to form C”.

Have C” decrypted and determine whether or not it decrypted to M.

If C” decrypted correctly, then bit 4 is in error. Record 7, add 1 to i, and
goto step 2 if ¢ < n. Otherwise halt.

=W

In the worst case we only need to examine the first n — 1 bits of C’. Hence we
will require at most n — 1 queries.

Once this algorithm halts, we can flip all those bits of C’ recorded in step
4 of the above algorithm. This will result in a ciphertext without any errors.

It works because any C” which decrypts correctly must have at most ¢ errors.
However, it has Hamming Distance 1 from C” which we know has ¢ + 1 errors,
so C” must have exactly ¢ errors. This means that the bit we flipped was an
incorrect bit. If C” does not decrypt correctly, then it must have ¢ + 2 bit errors
and hence we introduced another error when we flipped bit i.

The first algorithm will halt within 2¢+ 1 steps and the second will require at
most n— 1 steps. So the total attack takes at most n+ 2t queries and comparable
time.

2.3 Attacking McEliece

Once we have executed the algorithms described in the previous section, we will
obtain a ciphertext C' — Z which is error-free and we can then solve for the
message M using the method outlined in [AM87]. Let C, denote the corrected
ciphertext vector.

Briefly, the algorithm selects k bits from the vector C. to form C” and the
corresponding k columns from the generator matrix G. The resulting matrix G’
will be a k& x k matrix and we know that

Cl.=MG
so we can solve for M by inverting G’
M =ClG"

The attack as it is presented in [AMS87] requires that the k selected bits be error-
free in order to recover M. Consequently their attack requires C(n, k)/C(n—t, k)
times as much work since that is how many G’ they must try on average. Others
have improved on this attack, including [LB88,vT90]. However, the attacks are
still expensive.

2.4 Attacking Hwang-Rao

The algorithms described in section 2.1 can also be used to attack the system
described in [HR88|. The system is very similar to the McEliece cryptosystem
in that it adds a random error vector E to a codeword prior to transmission.
Again, it is assumed that decoding the resulting codeword is as hard as decoding
an aribtrary error-correcting code.

Once we have managed to remove the error-vector from the ciphertext, we
can apply an attack suggested by the Hwang and Rao in their paper. There are
a couple of different versions of their system described in their paper and corre-
sponding attacks are also described. We refer the reader to [HR88] for details.

3 Ajtai-Dwork

In [AD97] the authors present a PKC based on the assumption that the Unique
Shortest Vector Problem! (SVP) is computationally infeasible in the worst-case

! Unique up to a polynomial factor.

complexity. Briefly, a public key in the system consists of m + n n-dimensional
vectors w = (wy,...,w,) and v = (vy,...,V,,). How these vectors are chosen is
beyond the scope of this paper, but details can be found in [AD97] and [GGH97].

Encryption is simple in this system, but only one bit can be encrypted at
a time. However, there are multiple encryptions of both ‘0’ and ‘1’, and under
the asumption that SVP is infeasible, it is impossible to distinguish between two
ciphertexts without knowing u. To encrypt a ‘0’ a user chooses by, . .., b,, € {0,1}

and computes
m

2= () _(bi - v;))mod P(w)
i=1
where P(w) is the parallelepiped formed by the w;. To encrypt a ‘1’ a user
chooses z uniformly in the parallelepiped P(w).

To decrypt a message, the user computes 7 = <z, u>. If 7 is within 1/n of
an integer, then the ciphertext is decrypted as ‘0’. Otherwise the ciphertext is
decrypted as ‘1’. It is interesting to note that an encrypted ‘1’ will decrypt to
a ‘0’ with probability roughly 2/n. However, such a point is beyond the scope
of this paper (although it is addressed by the authors in [GGH97] and is the
motivation for their modification).

We have not included our chosen-ciphertext attack against Ajtai-Dwork which
allows us to recover the private key. It is a slightly more complicated version of
the attack described in the next section and we leave it as an exercise to the
reader to extend the attack.

3.1 Attacking the GGH Variant

In [GGHI7] the authors present a modification of the Ajtai-Dwork PKC. In the
original Ajtai-Dwork system as presented in [AD97], a ‘0’ will always decrypt to
a ‘0’. However, there is a 2/n probability that a ‘1’ will decrypt to a ‘0’ (where n
is the dimension of the associated lattice). The enhanced system eliminates this
problem by first specifying a vector v;, such that <u,v;, > is an odd integer.

To encrypt ‘0’, one still uniformly selects by,...,b,, € {0,1} and reduces
the vector >_1", b; - v; modulo the parallelepiped P(w). The resulting vector x
is the ciphertext. To encrypt ‘1’, one uniformly selects by,...,b, € {0,1} and
reduces the vector 1v;, + > " b; - v; modulo the parallelepiped P(w). Again,
the resulting vecotr x is the ciphertext.

To decrypt, the user computes 7 = <wu, x> and decrypts the ciphertext as
‘0’ if 7 is within 1/4 of some integer and decrypts the ciphertext as ‘1’ other-
wise. Our attack makes use of an oracle O(v) which computes < w,v > and
returns the resulting plaintext. Note, such an oracle exists since we could send a
legitimate message to a user which has a MAC computed as if the ciphertext in
question decrypted to a ‘0’. If the ciphertext decrypts correctly, then we know
that O(v) =‘0’. Otherwise we know that O(v) =1".

Given that we can send a user a vector v such that v; = z for some non-
zero ¥ and v; = 0 for ¢ # j, we can focus on one component of v at a time.
Hence we assume a simplified oracle O;(x) which computes u; - and returns ‘0’

(resp. ‘1’) if the result is (resp. is not) within 1/4 of an integer. Assuming that
|u;| = do.dy .. .d, we can determine |u;| using the following algorithm:

Algorithm D: (determining |u;|)

1. Let j =0.

2. If Oi(2j+1) =‘0’, then djdj+1 S {007].].} Otherwise djderl S {0]., 10}
3. Let j =7+ 1. If j <r goto step 2.

4. Pick dy = 0 and choose the remaining d; appropriately. 2

This algorithm will determine |u;| within 27" of the correct value. That’s because
1.0 = 0.1 in binary and our test (in step 2) may choose the alternate expansion
for the remaining digits of |u;|.

It’s important to understand that this attack determines the projection of
the hyperplanes onto all of the coordinate axis. For any particular axis it sets all
other coordinates to zero and performs a binary search on the boundary midway
between the hyperplane through the origin and the next hyperplane along the
axis. However, there’s nothing that says the attacker must use the same notion of
coordinates axis as everyone else. In fact, she could rotate the axis and perform
a binary search on the modified axis (that’s in fact what we do below in order to
determine the sign of the u;). Therefore one cannot counter this attack simply
by refusing to decrypt all ciphertext such that u; = 0 for all but one 3.

Once we determine |u;| for all ¢ it remains to determine the respective signs.
Since the private key u is equivalent to the private key —u we assume without
loss of generality that u; > 0 (more properly that the first non-zero u; > 0, but
we can permute the vectors and bases appropriately so that uy > 0). Given |u;]|
for some j > i, we can compute u; + u; for both values of the sign for u;. The
result will be different in each case and let & be the first bit that both sums differ
in. Then by computing

we can determine the sign of u;. That is, we use the oracle to determine which
sum is correct when considering bit k£ and hence whether u; > 0 or u; < 0.

Using this the oracle O(v) (which was used to construct O;(z)) we are able
to compute u. Notice that each invocation of the oracle returns one bit of in-
formation. Correspondingly we use each invocation of the oracle to determine
one bit of the private key. Hence our attack determines the private key u using
the information theoretic minimum number of oracle invocations. Therefore we
know that this is the best possible attack against u using an oracle.

We should point out that this is a non-adaptive attack. Unfortunately, one
must modify the attack to use one adaptation in order to achieve the infor-
mation theoretically minimal attack. This is due to the fact that one must see

2 If |us| = 1 for some 4, then u; = 0 for all j # i. This situation occurs with negligible
probability, but it is also easy to detect, so we assume that |u;| < 1 for all ¢ and
hence do = 0.

the |u;| before one can determine ciphertexts which will give their signs. From
a reaction attack standpoint, this is a minute difference since we gauge the
reaction to each ciphertext separately. However, it makes a difference from a
chosen-ciphertext standpoint because non-adaptive attacks are considered more
powerful than adaptive attacks.

4 Future Systems

The success of our attacks rely upon a common weakness in the PKCs we exam-
ined: given a ciphertext C, an attacker can produce a second ciphertext ¢’ which
has non-neglible probabilities of decoding to the same plaintext and to a different
plaintext. For the McEliece system of [M78], whether or not C’ decodes correctly
gives information. For the Ajtai-Dwork and Goldreich-Goldwasser-Halevi sys-
tems of [AD97,GGHI7], whether or not C’ decodes correctly gives information
about the private key.

Each of these systems could be considered a closest-point cryptosystem. That
is, the ability to decode a ciphertext depends upon the ability to determine the
closest “point” to the ciphertext in some linear space. For error-correcting code
systems, this equates to the ability to determine the closest codeword in the
linear space of codewords. For lattice-based systems, this equates to finding the
closest point in a lattice. In all of these systems one could consider the class of
ciphertexts corresponding to a particular plaintext to be a sphere surrounding a
point in the respective space (where the boundaries of the sphere are determined
by an appropriate distance metric).

By examining ciphertexts which are close to each other in the space (but
possibly in different classes) we can determine the boundaries of this sphere
and hence the center of the sphere. For some of the systems this will only give
us the closest point in the respective space. In those systems, an attacker can
already produce points in the space at will using the public key. So determining
the closest point doesn’t give any more information about the private key that
the public key does. For other systems, the security of the system relies upon
the inability to determine points in the respective space. Hence the ability to
determine a closest point leads to the ability to determine the private key.

We feel that any other public-key cryptosystem with these properties will be
vulnerable to the same sorts of attacks we present here.

5 Conclusion

We feel that the existance of these attacks effectively limits these ciphers to
theoretical considerations only. That is, any implementation of the ciphers will
be subject to the attacks we present and hence not safe. We should point out
that we have not broken these cryptosystems in the sense that we are able to
mathematically derive the private key. Instead our attacks rely upon the fact
that someone within the system knows the private key (and hence the answer
to the intractible problem). Therefore we would encourage further research into

the properties of these cryptosystems in order to determine if a modified cryp-
tosystem can be designed with the same theoretical basis and that is also safe
against our attacks.

References

[AMS7]

[ADY7]

[B67]

[B68]

[B73]

[BMvTT7S]

[B97]

[GGHO7]

[HR88)

[HW92]

[J83]

[KT91]

[LBSS]

[LDW94]

[M69]

[M78]

C. M. Adams, H. Meijer, “Security-Related Comments Regarding
McEliece’s Public-Key Cryptosystem,” Advances in Cryptology—Pro-
ceedings of CRYPTO ’87, Springer-Verlag, 1988, pp.224—230.

M. Ajtai, C. Dwork, “A Public-Key Cryptosystem with Worst-Case/
Average-Case Equivalence,” In 29th ACM Symposium on Theory of Com-
puting, 1997, pp. 284-293.

E.R. Berlekamp, “Nonbinary BCH Decoding,” paper presented at the
1967 International Symposium on Information Theory, San Remo, Italy.
E.R. Berlekamp, Algebraic Coding Theory, New York: mcGraw-Hill, 1968.
E.R. Berlekamp, “Goppa Codes,” IEEE Transactions on Information
Theory, Vol. IT-19, No. 5, pp. 590-592, September 1973.

E.R. Berlekamp, R.J. McEliece, H. van Tilborg, “On the Inherent In-
tractability of Certain Coding Problems,” IEEE Transactions on Infor-
mation Theory, Vol. 24, 1978, pp. 384-386.

T. Berson, “Failure of the McEliece Public-Key Cryptosystem Under
Message-Resend and Related-Message Attack,” Advances in Cryptology—
CRYPTO °97 Proceedings, Springer-Verlag, 1997, pp. 213-220.

O. Goldreich, S. Goldwasser, S. Halevi, “Eliminating Errors in the Ajtai-
Dwork Cryptosystem,” Advances in Cryptology—CRYPTO ’97 Proceed-
ings, Springer-Verlag, 1997, pp. 105—111.

T. Hwang, T.R.N. Rao, “Secret Error-Correcting Codes (SECC),” Ad-
vances in Cryptology—CRYPTO ’88 Proceedings, Springer-Verlag, 1990,
pp. 540-563.

L. Harn, D.C. Wang, “Cryptanalysis and Modification of Digital Signa-
ture Scheme Based on Error-Correcting Codes,” FElectronics Letters, v.
28, n. 2, 10 Jan 1992, p. 157-159.

J.P. Jordan, “A Variant of a Public-Key Cryptosystem Based on Goppa
Codes,” Sigact News, 1983, pp. 61-66.

V.I. Korzhik, A.I. Turkin, “Cryptanalysis of McEliece’s Public Key
Cryptosystem,” Advances in Cryptology— FEUROCRYPT ’91 Proceedings,
Springer—Verlag, 1991, pp. 68-70.

P.J. Lee, E.F. Brickell, “An Observation on the Security of McEliece’s
Public-Key Cryptosystem,” Advances in Cryptology—EUROCRYPT ’88
Proceedings, Springer—Verlag, 1988, pp. 275-280.

Y.X. Li, R.H. Deng, X.M. Wang, “On the Equivalence of McEliece’s
and Niederreiter’s Public-Key Cryptosystems,” IEEE Transactions on
Information Theory, Vol. 40, 1994, pp. 271-273.

J.L. Massey, “Shift Register Synthesis and BCH Decoding,” IEEE Trans-
actions on Information Theory, Vol. IT-15, No. 1, pp. 122-127, Jan. 1969.
R.J. McEliece, “A Public-Key Cryptosystem Based on Algebraic Cod-
ing Theory,” Deep Space Network Progress Report 42-44, Jet Propulsion
Laboratory, California Institute of Technology, 1978, pp. 104-113.

[N86)

[P75]

[SKHN74]

[SKHN76)

[vT90]

H. Niederreiter, “Knapsack-Type Cryptosystems and Algebraic Coding
Theory,” Problems of Control and Information Theory, v. 15, n. 2, 1986,
pp. 159-166.

N.J. Patterson, “The Algebraic Decoding of Goppa Codes,” IEEE Trans-
actions on Information Theory, Vol. IT-21, No. 2, pp. 203-207, March
1975.

Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, “A method for
solving the key equation for decoding Goppa codes,” presented at the
IEEE Int. Symp. Information Theory, Notre Dame, Ind., Oct. 27-31,
1974.

Y. Sagiyama, M. Kasahara, S. Hirasawa, T. Namekawa, “An Erasures-
and-Errors Decoding Algorithm for Goppa Codes,” IEEE Transactions
on Information Theory, pp. 238-241, March 1976.

J. van Tilburg, “On the McEliece Cryptosystem,” Advances in Crypto-
logy—CRYPTO ’88 Proceedings, Springer-Verlag, 1990, pp. 119-131.

