
The MacGu�n Block Cipher AlgorithmMatt BlazeAT&T Bell Laboratories101 Crawfords Corner Road, Holmdel, NJ 07733 USAmab@research.att.comBruce SchneierCounterpane Systems730 Fair Oaks Avenue, Oak Park, IL 70302 USAschneier@chinet.comAbstract. This paper introduces MacGu�n, a 64 bit \codebook" blockcipher. Many of its characteristics (block size, application domain, per-formance and implementation structure) are similar to those of the U.S.Data Encryption Standard (DES). It is based on a Feistel network, inwhich the cleartext is split into two sides with one side repeatedly mod-i�ed according to a keyed function of the other. Previous block ciphersof this design, such as DES, operate on equal length sides. MacGu�n isunusual in that it is based on a generalized unbalanced Feistel network(GUFN) in which each round of the cipher modi�es only 16 bits accord-ing to a function of the other 48. We describe the general characteristicsof MacGu�n architecture and implementation and give a complete spec-i�cation for the 32-round, 128-bit key version of the cipher.1 IntroductionFeistel ciphers [1] operate by alternately encrypting the bits in one \side" of theirinput based on a keyed non-linear function of the bits in the other. This is donerepeatedly, for a �xed number of \rounds". It is believed that, when iterated oversu�ciently many rounds, even relatively simple non-linear functions can providehigh security. Traditionally, such ciphers split their input block evenly about themiddle; a 64 bit cipher would operate on two 32 bit internal blocks, swappingthe \left" (the target block) and \right" (the control block) sides with each round.Several important block ciphers, including DES [3], are built upon this structure.We say these ciphers are based on balanced Feistel networks (BFNs), since bothsides are of equal length.This paper describes a block cipher, called MacGu�n, that is based on avariant of this structure, the generalized unbalanced Feistel network (GUFN),in which the target and control blocks need not be of equal length1. GUFNs,especially those in which the target block is smaller than the control block,appear to have a number of attractive properties for cipher design, particularly1 Several cryptographic hash functions, such as MD5 [6] and SHA [5], employ anunbalanced structure similar in some respects to a GUFN.

with respect to the design of the non-linear function. The principles underlyingGUFNs are discussed in [7].As its name suggests, MacGu�n is intended primarily as a catalyst for dis-cussion and analysis. We believe it may also prove a practical, high security blockcipher suitable for general use as an alternative to DES. It operates on 64 bitblocks of data, with an internal structure containing a 16 bit target block anda 48 bit control block (\48 on 16", in the notation of [7]). In principle, almostany length key and any number of rounds may be used, although we specify 32rounds and a 128 bit key as \standard".2 ArchitectureWe have been conservative in most aspects of MacGu�n's design, isolating mostof its novel features to those parts of the design related to its unbalanced struc-ture. As such, much of our design is adapted directly from DES. We hope thatthe many similarities between DES and MacGu�n will invite analysis of theirdi�erences.Basically, the input cipherblock is partitioned into four 16 bit words, fromleft to right. In each round, the three rightmost words comprise the controlblock and are bitwise exclusive-ORed (XORed) with three words derived fromthe key. These 48 bits are then split eight ways according to a �xed permutationto provide input to eight functions of six bits (the \S-boxes"), each producingtwo bits of output. The 16 S-box output bits are then XORed, according toanother �xed permutation, with the bits in the leftmost (target) word. Finally,the leftmost word is rotated into the rightmost position. The cipher can bereversed by a similar process, with the key derived bits applied in reverse order.2.1 Design PrinciplesBecause each round operates on only half as many bits as in a BFN (16 asopposed to 32), we use 32 rounds, twice as many as in DES, in our standardversion. Because there are twice as many rounds, however, there are also a total oftwice as many key bits XORed with the control blocks. These bits are obtainedfrom the 128 bit key with the key expansion function described in the nextsection.We adapt our S-boxes directly from those of DES. The eight DES S-boxeseach produce four bits of output. Since we require only two bits from each (fora total of 16 bits), we use only the \outer" two output bits from each S-box.In each round, each control block bit is XORed with one derived key bit andprovides one input to exactly one S-box. There is no \expansion" permutation,since the number of control bits equals the number of S-box inputs. The controlbits are mapped 1 : 1 to S-box inputs according to a �xed permutation. Thispermutation was designed so that each S-box receives two of its six inputs fromeach of the three registers in the control block.

S-box outputs are distributed across the 16 target bits. No S-box output goesto a bit position that is used as a direct input to itself in the next four rounds.Observe that each of the three control registers contains bits produced in adi�erent round of the cipher, and that each encrypted bit provides input to threedi�erent S-boxes (in the next three rounds), before it is encrypted again.The cipher is designed for implementation in either hardware or software.Permutations were chosen to minimize the number of shift and mask operationsand to allow time/memory optimizations in a software implementation.3 Algorithm Description3.1 Data Structures and NotationWe use the following notation:� represents a 16 bit bitwise exclusive-OR (XOR) operation. is the conventional assignment operator, except as noted below.w; x; y; z i copies the data from 64 bit interface i, from lowest to highest bitposition, into 16 bit registers w; x; y and z, respectively.i w; x; y; z copies the bits from 16 bit registers w; x; y and z, respectively intointerface i, from lowest to highest bit position.s; t; u; v w; x; y; z copies w; x; y and z to s; t; u and v, respectively, in parallel(e.g., x; y y; x swaps x and y).w(F (x; y; z) selects, according to a �xed permutation, bits from x; y and zas input to function F , storing the function output in bits of w, selectedaccording to a �xed permutation.The cipher employs the following internal structures:I0:::63; O0:::63 are the 64 bit external input and output interfaces.left; a; b; c; t are 16 bit registers on which all cryptographic operations are per-formed. r0 represents the least signi�cant bit of r, r15 the most signi�cant.k0:::127 is a 128 bit secret key parameter.K[0:::31; 0:::2] is a 32� 3 table of 16 bit words containing an expansion of k, asexplained below.3.2 S-boxes and PermutationsNonlinearity in the encryption and key setup processes is provided primarilythrough eight functions, or \S-boxes", denoted S1:::S8, each taking six bits ofinput selected from the a; b and c registers and producing two bits of output(which are XORed into the left register).Inputs to each S-box are selected uniquely from the a; b and c registers, asspeci�ed in Table 1. (In this table, input bit 0 is the least signi�cant bit.) Outputsfrom each S-box are distributed across the 16 bit target block as speci�ed inTable 2. Each S-box is de�ned as a 64�2 bit mapping of input values to outputs,as given in Table 3.

Input BitS-box 0 1 2 3 4 5S1 a2 a5 b6 b9 c11 c13S2 a1 a4 b7 b10 c8 c14S3 a3 a6 b8 b13 c0 c15S4 a12 a14 b1 b2 c4 c10S5 a0 a10 b3 b14 c6 c12S6 a7 a8 b12 b15 c1 c5S7 a9 a15 b5 b11 c2 c7S8 a11 a13 b0 b4 c3 c9Table 1. S-Box Input PermutationOutput BitS-box 0 1S1 t0 t1S2 t2 t3S3 t4 t5S4 t6 t7S5 t8 t9S6 t10 t11S7 t12 t13S8 t14 t15Table 2. S-Box Output Permutation3.3 Key SetupEach round of the cipher uses the secret key parameter to perturb the S-boxesby bitwise XOR against the S-box inputs. Each round thus requires 48 key bits.To convert the 128 bit k parameter to a sequence of 48 bit values for each round(the K table), MacGu�n uses an iterated version of its own block encryptionfunction. See Figure 1.3.4 Block EncryptionBlock encryption is de�ned in Figure 2.3.5 Block DecryptionBlock decryption is similar to block encryption, and is de�ned in Figure 3.

K 0left; a; b; c k0:::63for h = 0 to 31 dofor i = 0 to 31 dofor j = 1 to 8 dot(Sj(a�K[i;0]; b�K[i; 1]; c�K[i;2])left left� tleft; a; b; c a; b; c; leftK[h;0] leftK[h;1] aK[h;2] bleft; a; b; c k64:::127for h = 0 to 31 dofor i = 0 to 31 dofor j = 1 to 8 dot(Sj(a�K[i;0]; b�K[i; 1]; c�K[i;2])left left� tleft; a; b; c a; b; c; leftK[h;0] K[h;0] � leftK[h;1] K[h;1] � aK[h;2] K[h;2] � bFig. 1. MacGu�n Key Setupleft; a; b; c Ifor i = 0 to 31 dofor j = 1 to 8 dot(Sj(a�K[i;0]; b�K[i;1]; c�K[i;2])left left� tleft; a; b; c a; b; c; leftO left; a; b; c Fig. 2. MacGu�n Block Encryptionc; left; a; b Ifor i = 31 downto 0 dofor j = 1 to 8 dot(Sj(a�K[i;0]; b�K[i;1]; c�K[i;2])left left� tleft; a; b; c c; left; a; bO left; a; b; c Fig. 3. MacGu�n Block Decryption

S12 0 0 3 3 1 1 0 0 2 3 0 3 3 2 1 1 2 2 0 0 2 2 3 1 3 3 1 0 1 1 20 3 1 2 2 2 2 0 3 0 0 3 0 1 3 1 3 1 2 3 3 1 1 2 1 2 2 0 1 0 0 3S23 1 1 3 2 0 2 1 0 3 3 0 1 2 0 2 3 2 1 0 0 1 3 2 2 0 0 3 1 3 2 10 3 2 2 1 2 3 1 2 1 0 3 3 0 1 0 1 3 2 0 2 1 0 2 3 0 1 1 0 2 3 3S32 3 0 1 3 0 2 3 0 1 1 0 3 0 1 2 1 0 3 2 2 1 1 2 3 2 0 3 0 3 2 13 1 0 2 0 3 3 0 2 0 3 3 1 2 0 1 3 0 1 3 0 2 2 1 1 3 2 1 2 0 1 2S41 3 3 2 2 3 1 1 0 0 0 3 3 0 2 1 1 0 0 1 2 0 1 2 3 1 2 2 0 2 3 32 1 0 3 3 0 0 0 2 2 3 1 1 3 3 2 3 3 1 0 1 1 2 3 1 2 0 1 2 0 0 2S50 2 2 3 0 0 1 2 1 0 2 1 3 3 0 1 2 1 1 0 1 3 3 2 3 1 0 3 2 2 3 00 3 0 2 1 2 3 1 2 1 3 2 1 0 2 3 3 0 3 3 2 0 1 3 0 2 1 0 0 1 2 1S62 2 1 3 2 0 3 0 3 1 0 2 0 3 2 1 0 0 3 1 1 3 0 2 2 0 1 3 1 1 3 23 0 2 1 3 0 1 2 0 3 2 1 2 3 1 2 1 3 0 2 0 1 2 1 1 0 3 0 3 2 0 3S70 3 3 0 0 3 2 1 3 0 0 3 2 1 3 2 1 2 2 1 3 1 1 2 1 0 2 3 0 2 1 01 0 0 3 3 3 3 2 2 1 1 0 1 2 2 1 2 3 3 1 0 0 2 3 0 2 1 0 3 1 0 2S83 1 0 3 2 3 0 2 0 2 3 1 3 1 1 0 2 2 3 1 1 0 2 3 1 0 0 2 2 3 1 01 0 3 1 0 2 1 1 3 0 2 2 2 2 0 3 0 3 0 2 2 3 3 0 3 1 1 1 1 0 2 3Table 3. MacGu�n S-Boxes4 Implementation, Performance and ApplicationsFeistel ciphers, with their many permutation operations and table lookups, areparticularly well suited to hardware implementation. Because permutations inhardware are \free" (they are implemented with simple connections), and be-cause S-box lookups can occur in parallel, each round can be implemented withconventional modern hardware in two clock cycles.Software implementations of Feistel ciphers on general-purpose computersare typically much slower than their hardware counterparts, since the S-boxesmust be evaluated in sequence and bit permutations must be simulated with

shifts, ANDs, ORs and other operators. Depending on the speci�c permutationsand S-box structures, however, many of these operations can be made fasterwith table lookups and by combining several operations into one.The permutations in MacGu�n have been designed explicitly to permit soft-ware optimization. First, the six inputs to each S-box are from di�erent bits fromeach of the a; b and c registers, allowing the three registers to be masked andORed together (without individual shifting) for a single lookup for each S-box.Furthermore, for each S-box there is a unique \mate" S-box with which it sharesno common inputs. This allows the eight S-boxes to be \paired o�" and lookedup two at a time with a single 216 entry table containing the combined outputsof both S-boxes. (The pairs are S1S2; S3S4; S5S7 and S6S8).An optimized software implementation (given in the Appendix) of 32 roundMacGu�n runs at close to the speed of optimized 16 round DES in software.An implementation on a 486/66 processor has a bandwidth of about 1.5Mbps;a reasonable DES implementation [2] on the same processor runs at 2.1Mbps.The MacGu�n interface is similar to that of DES (except for the largerkeyspace). It can be used with the standard \FIPS-81" modes of operation[4].Note that key setup is an explicitly time consuming process. This is intended todiscourage exhaustive search of poorly chosen keys. In an implementation whererapid selection among many keys is required (such as a packet-based networksecurity protocol) the 1536 bit expanded key may be passed directly as thecryptovariable.Experiments with MacGu�n are detailed in [7].While we believe the GUFN structure is superior to the conventional BFNcipher structure, much more discussion and analysis is required before we canrecommend its use for protecting sensitive data. We encourage attacks againstMacGu�n in particular and the GUFN structure in general.References1. H. Feistel. Cryptography and Computer Privacy. Scienti�c American, May 1973.2. J. Lacy, D.P. Mitchell, and W.M. Schell. CryptoLib: Cryptography in Software.Proceedings of USENIX Security Symposium IV, October 1993.3. National Bureau of Standards. Data Encryption Standard, Federal InformationProcessing Standards Publication 46, US Government Printing O�ce, Washington,D.C., 1977.4. National Bureau of Standards. Data Encryption Standard Modes of Operation,Federal Information Processing Standards Publication 81, US Government PrintingO�ce, Washington, D.C., 1980.5. National Institute for Standards and Technology. Secure Hash Standard. FederalInformation Processing Standard Publication 180, US Government Printing O�ce,April 1993.6. R. Rivest. The MD5 Message Digest Algorithm. RFC 1321, IETF, April 1992.7. B. Schneier and M. Blaze. Unbalanced Feistel Network Block Ciphers. To appear,1994.

Appendix: Optimized C Language Implementation/** MacGuffin Cipher* 10/3/94 - Matt Blaze* (fast, unrolled version)*/#define ROUNDS 32#define KSIZE (ROUNDS*3)/* expanded key structure */typedef struct mcg_key {unsigned short val[KSIZE];} mcg_key;#define TSIZE (1<<16)/* the 8 s-boxes, expanded to put the output bits in the right* places. note that these are the des s-boxes (in left-right,* not canonical, order), but with only the "outer" two output* bits. */unsigned short sboxes[8][64] = {/* 0 (S1) */{0x0002, 0x0000, 0x0000, 0x0003, 0x0003, 0x0001, 0x0001, 0x0000,0x0000, 0x0002, 0x0003, 0x0000, 0x0003, 0x0003, 0x0002, 0x0001,0x0001, 0x0002, 0x0002, 0x0000, 0x0000, 0x0002, 0x0002, 0x0003,0x0001, 0x0003, 0x0003, 0x0001, 0x0000, 0x0001, 0x0001, 0x0002,0x0000, 0x0003, 0x0001, 0x0002, 0x0002, 0x0002, 0x0002, 0x0000,0x0003, 0x0000, 0x0000, 0x0003, 0x0000, 0x0001, 0x0003, 0x0001,0x0003, 0x0001, 0x0002, 0x0003, 0x0003, 0x0001, 0x0001, 0x0002,0x0001, 0x0002, 0x0002, 0x0000, 0x0001, 0x0000, 0x0000, 0x0003},/* 1 (S2) */{0x000c, 0x0004, 0x0004, 0x000c, 0x0008, 0x0000, 0x0008, 0x0004,0x0000, 0x000c, 0x000c, 0x0000, 0x0004, 0x0008, 0x0000, 0x0008,0x000c, 0x0008, 0x0004, 0x0000, 0x0000, 0x0004, 0x000c, 0x0008,0x0008, 0x0000, 0x0000, 0x000c, 0x0004, 0x000c, 0x0008, 0x0004,0x0000, 0x000c, 0x0008, 0x0008, 0x0004, 0x0008, 0x000c, 0x0004,0x0008, 0x0004, 0x0000, 0x000c, 0x000c, 0x0000, 0x0004, 0x0000,0x0004, 0x000c, 0x0008, 0x0000, 0x0008, 0x0004, 0x0000, 0x0008,0x000c, 0x0000, 0x0004, 0x0004, 0x0000, 0x0008, 0x000c, 0x000c},/* 2 (S3) */{0x0020, 0x0030, 0x0000, 0x0010, 0x0030, 0x0000, 0x0020, 0x0030,0x0000, 0x0010, 0x0010, 0x0000, 0x0030, 0x0000, 0x0010, 0x0020,0x0010, 0x0000, 0x0030, 0x0020, 0x0020, 0x0010, 0x0010, 0x0020,0x0030, 0x0020, 0x0000, 0x0030, 0x0000, 0x0030, 0x0020, 0x0010,

0x0030, 0x0010, 0x0000, 0x0020, 0x0000, 0x0030, 0x0030, 0x0000,0x0020, 0x0000, 0x0030, 0x0030, 0x0010, 0x0020, 0x0000, 0x0010,0x0030, 0x0000, 0x0010, 0x0030, 0x0000, 0x0020, 0x0020, 0x0010,0x0010, 0x0030, 0x0020, 0x0010, 0x0020, 0x0000, 0x0010, 0x0020},/* 3 (S4) */{0x0040, 0x00c0, 0x00c0, 0x0080, 0x0080, 0x00c0, 0x0040, 0x0040,0x0000, 0x0000, 0x0000, 0x00c0, 0x00c0, 0x0000, 0x0080, 0x0040,0x0040, 0x0000, 0x0000, 0x0040, 0x0080, 0x0000, 0x0040, 0x0080,0x00c0, 0x0040, 0x0080, 0x0080, 0x0000, 0x0080, 0x00c0, 0x00c0,0x0080, 0x0040, 0x0000, 0x00c0, 0x00c0, 0x0000, 0x0000, 0x0000,0x0080, 0x0080, 0x00c0, 0x0040, 0x0040, 0x00c0, 0x00c0, 0x0080,0x00c0, 0x00c0, 0x0040, 0x0000, 0x0040, 0x0040, 0x0080, 0x00c0,0x0040, 0x0080, 0x0000, 0x0040, 0x0080, 0x0000, 0x0000, 0x0080},/* 4 (S5) */{0x0000, 0x0200, 0x0200, 0x0300, 0x0000, 0x0000, 0x0100, 0x0200,0x0100, 0x0000, 0x0200, 0x0100, 0x0300, 0x0300, 0x0000, 0x0100,0x0200, 0x0100, 0x0100, 0x0000, 0x0100, 0x0300, 0x0300, 0x0200,0x0300, 0x0100, 0x0000, 0x0300, 0x0200, 0x0200, 0x0300, 0x0000,0x0000, 0x0300, 0x0000, 0x0200, 0x0100, 0x0200, 0x0300, 0x0100,0x0200, 0x0100, 0x0300, 0x0200, 0x0100, 0x0000, 0x0200, 0x0300,0x0300, 0x0000, 0x0300, 0x0300, 0x0200, 0x0000, 0x0100, 0x0300,0x0000, 0x0200, 0x0100, 0x0000, 0x0000, 0x0100, 0x0200, 0x0100},/* 5 (S6) */{0x0800, 0x0800, 0x0400, 0x0c00, 0x0800, 0x0000, 0x0c00, 0x0000,0x0c00, 0x0400, 0x0000, 0x0800, 0x0000, 0x0c00, 0x0800, 0x0400,0x0000, 0x0000, 0x0c00, 0x0400, 0x0400, 0x0c00, 0x0000, 0x0800,0x0800, 0x0000, 0x0400, 0x0c00, 0x0400, 0x0400, 0x0c00, 0x0800,0x0c00, 0x0000, 0x0800, 0x0400, 0x0c00, 0x0000, 0x0400, 0x0800,0x0000, 0x0c00, 0x0800, 0x0400, 0x0800, 0x0c00, 0x0400, 0x0800,0x0400, 0x0c00, 0x0000, 0x0800, 0x0000, 0x0400, 0x0800, 0x0400,0x0400, 0x0000, 0x0c00, 0x0000, 0x0c00, 0x0800, 0x0000, 0x0c00},/* 6 (S7) */{0x0000, 0x3000, 0x3000, 0x0000, 0x0000, 0x3000, 0x2000, 0x1000,0x3000, 0x0000, 0x0000, 0x3000, 0x2000, 0x1000, 0x3000, 0x2000,0x1000, 0x2000, 0x2000, 0x1000, 0x3000, 0x1000, 0x1000, 0x2000,0x1000, 0x0000, 0x2000, 0x3000, 0x0000, 0x2000, 0x1000, 0x0000,0x1000, 0x0000, 0x0000, 0x3000, 0x3000, 0x3000, 0x3000, 0x2000,0x2000, 0x1000, 0x1000, 0x0000, 0x1000, 0x2000, 0x2000, 0x1000,0x2000, 0x3000, 0x3000, 0x1000, 0x0000, 0x0000, 0x2000, 0x3000,0x0000, 0x2000, 0x1000, 0x0000, 0x3000, 0x1000, 0x0000, 0x2000},/* 7 (S8) */{0xc000, 0x4000, 0x0000, 0xc000, 0x8000, 0xc000, 0x0000, 0x8000,0x0000, 0x8000, 0xc000, 0x4000, 0xc000, 0x4000, 0x4000, 0x0000,0x8000, 0x8000, 0xc000, 0x4000, 0x4000, 0x0000, 0x8000, 0xc000,0x4000, 0x0000, 0x0000, 0x8000, 0x8000, 0xc000, 0x4000, 0x0000,

0x4000, 0x0000, 0xc000, 0x4000, 0x0000, 0x8000, 0x4000, 0x4000,0xc000, 0x0000, 0x8000, 0x8000, 0x8000, 0x8000, 0x0000, 0xc000,0x0000, 0xc000, 0x0000, 0x8000, 0x8000, 0xc000, 0xc000, 0x0000,0xc000, 0x4000, 0x4000, 0x4000, 0x4000, 0x0000, 0x8000, 0xc000}};/* table of s-box outputs, expanded for 16 bit input.* this one table includes all 8 sboxes - just mask off* the output bits not in use. */unsigned short stable[TSIZE];/* we exploit two features of the s-box input & output perms -* first, each s-box uses as input two different bits from each* of the three registers in the right side, and, second,* for each s-box there is another-sbox with no common input bits* between them. therefore we can lookup two s-box outputs in one* probe of the table. just mask off the approprate input bits* in the table below for each of the three registers and OR* together for the table lookup index.* these masks are also available below in #defines, for better* lookup speed in unrolled loops. */unsigned short lookupmasks[4][3] = {/* a , b , c */{0x0036, 0x06c0, 0x6900}, /* s1+s2 */{0x5048, 0x2106, 0x8411}, /* s3+s4 */{0x8601, 0x4828, 0x10c4}, /* s5+s7 */{0x2980, 0x9011, 0x022a}}; /* s6+s8 *//* this table contains the corresponding output masks for the* lookup procedure mentioned above.* (similarly available below in #defines). */unsigned short outputmasks[4] = {0x000f /*s1+s2*/, 0x00f0 /*s3+s4*/,0x3300 /*s5+s7*/, 0xcc00 /*s6+s8*/};/* input and output lookup masks (see above) *//* s1+s2 */#define IN00 0x0036#define IN01 0x06c0#define IN02 0x6900#define OUT0 0x000f/* s3+s4 */#define IN10 0x5048#define IN11 0x2106#define IN12 0x8411

#define OUT1 0x00f0/* s5+s7 */#define IN20 0x8601#define IN21 0x4828#define IN22 0x10c4#define OUT2 0x3300/* s6+s8 */#define IN30 0x2980#define IN31 0x9011#define IN32 0x022a#define OUT3 0xcc00/** initialize the macguffin s-box tables.* this takes a while, but is only done once.*/mcg_init(){ unsigned int i,j,k;int b;/** input permutation for the 8 s-boxes.* each row entry is a bit position from* one of the three right hand registers,* as follows:* a,a,b,b,c,c*/static int sbits[8][6] = {{2,5,6,9,11,13}, {1,4,7,10,8,14},{3,6,8,13,0,15}, {12,14,1,2,4,10},{0,10,3,14,6,12}, {7,8,12,15,1,5},{9,15,5,11,2,7}, {11,13,0,4,3,9}};for (i=0; i<TSIZE; i++) {stable[i]=0;for (j=0; j<8; j++)stable[i] |=sboxes[j][((i>>sbits[j][0])&1)|(((i>>sbits[j][1])&1)<<1)|(((i>>sbits[j][2])&1)<<2)|(((i>>sbits[j][3])&1)<<3)|(((i>>sbits[j][4])&1)<<4)|(((i>>sbits[j][5])&1)<<5)];}}

/** expand key to ek*/mcg_keyset(key,ek)unsigned char *key;mcg_key *ek;{ int i,j;unsigned char k[2][8];mcg_init();bcopy(&key[0],k[0],8);bcopy(&key[8],k[1],8);for (i=0; i<KSIZE; i++)ek->val[i]=0;for (i=0; i<2; i++)for (j=0; j<32; j++) {mcg_block_encrypt(k[i],ek);ek->val[j*3] ^= k[i][0] | (k[i][1]<<8);ek->val[j*3+1] ^= k[i][2] | (k[i][3]<<8);ek->val[j*3+2] ^= k[i][4] | (k[i][5]<<8);}}/** codebook encrypt one block with given expanded key*/mcg_block_encrypt(blk,key)unsigned char *blk;mcg_key *key;{ unsigned short r0, r1, r2, r3, a, b, c;int i;unsigned short *ek;/* copy cleartext into local words */r0=blk[0]|(blk[1]<<8);r1=blk[2]|(blk[3]<<8);r2=blk[4]|(blk[5]<<8);r3=blk[6]|(blk[7]<<8);ek = &(key->val[0]);/* round loop, unrolled 4x */for (i=0; i<(ROUNDS/4); i++) {

a = r1 ^ *(ek++); b = r2 ^ *(ek++); c = r3 ^ *(ek++);r0 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));a = r2 ^ *(ek++); b = r3 ^ *(ek++); c = r0 ^ *(ek++);r1 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));a = r3 ^ *(ek++); b = r0 ^ *(ek++); c = r1 ^ *(ek++);r2 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));a = r0 ^ *(ek++); b = r1 ^ *(ek++); c = r2 ^ *(ek++);r3 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));}/* copy 4 encrypted words back to output */blk[0] = r0; blk[1] = r0>>8;blk[2] = r1; blk[3] = r1>>8;blk[4] = r2; blk[5] = r2>>8;blk[6] = r3; blk[7] = r3>>8;}/** codebook decrypt one block with given expanded key*/mcg_block_decrypt(blk,key)unsigned char *blk;mcg_key *key;{ unsigned short r0, r1, r2, r3, a, b, c;int i;unsigned short *ek;/* copy ciphertext to 4 local words */r0=blk[0]|(blk[1]<<8);r1=blk[2]|(blk[3]<<8);r2=blk[4]|(blk[5]<<8);r3=blk[6]|(blk[7]<<8);

ek = &(key->val[KSIZE]);/* round loop, unrolled 4x */for (i=0; i<(ROUNDS/4); ++i) {c = r2 ^ *(--ek); b = r1 ^ *(--ek); a = r0 ^ *(--ek);r3 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));c = r1 ^ *(--ek); b = r0 ^ *(--ek); a = r3 ^ *(--ek);r2 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));c = r0 ^ *(--ek); b = r3 ^ *(--ek); a = r2 ^ *(--ek);r1 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));c = r3 ^ *(--ek); b = r2 ^ *(--ek); a = r1 ^ *(--ek);r0 ^=((OUT0 & stable[(a & IN00)|(b & IN01)|(c & IN02)])| (OUT1 & stable[(a & IN10)|(b & IN11)|(c & IN12)])| (OUT2 & stable[(a & IN20)|(b & IN21)|(c & IN22)])| (OUT3 & stable[(a & IN30)|(b & IN31)|(c & IN32)]));}/* copy decrypted bits back to output */blk[0] = r0; blk[1] = r0>>8;blk[2] = r1; blk[3] = r1>>8;blk[4] = r2; blk[5] = r2>>8;blk[6] = r3; blk[7] = r3>>8;}
This article was processed using the LaTEX macro package with LLNCS style

