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1 Introduction

Skein [13] is a fast, versatile, and secure hash function that has been submitted as an AHS candidate.
One of Skein’s features is that it is backed by security proofs. This paper presents, explains, and
justifies the various provable security claims underlying Skein.

1.1 Background and Summary

The base (also called atomic) primitives underlying Skein are the tweakable block cipher Threefish
and derived compression function. Skein is built on top of these in some mode of operation. A
proof that Skein possesses some security property S is a proof of a statement of the form: “If the
atomic primitive has security property A then Skein is guaranteed to have security property S.”
The proof takes the form of a reduction which, given an attacker violating property S of Skein,
constructs an attacker violating property A of the atomic primitive. We will be providing such
proofs for various different choices of S.

It should be understood that a proof of security does not say that it would be impossible to find
attacks violating security property S for Skein. What it says is that it would be impossible to find
such attacks without uncovering attacks violating security property A of the atomic primitive. The
proof transfers confidence from the atomic primitive to Skein. It validates the mode of operation,
meaning, the higher-level design. It says that there are no flaws in this design. The practical
consequence is that cryptanalysis can be confined to the atomic primitives. There is no need to
attempt to attack Skein itself. You may as well invest your effort in attacking Threefish and the
compression function.

The first and most basic property about which we have proofs is collision resistance. However,
this isn’t the only security property we support via proofs. A look at the contemporary usage
of hash functions makes it clear that they are used in ways that call for security properties well
beyond, and different from, collision resistance. In particular, hash functions are used for message
authentication and as pseudorandom functions (PRFs) in key derivation. (These usages refer to
keyed versions of the hash function, e.g., HMAC [2, 1].) They are also used to instantiate random
oracles in public key cryptography schemes. We believe that this type of usage will continue, and
modern hash functions should support it. This is the design philosophy that has underlain Skein.

We approach providing provable support for these additional properties by showing that the mode
of operation underlying Skein is MPP (Multi-Property Preserving) [5]. This means that a number
of different security attributes, if possessed by the atomic primitive, are guaranteed to be possessed
by Skein. The first such property is collision resistance. The second is the PRF property, as a
consequence of which we obtain provable support for the use of keyed Skein as a KDF and MAC.
The third is being a pseudorandom oracle (PRO), meaning indifferentiability from a random oracle.

One of the most widespread current usages of hash functions is for HMAC [2, 16]. This use
is supported by proofs of security for the current generation of hash functions that use Merkle-
Damg̊ard mode [2, 1]. We expect that any future hash function will continue to be utilized in
HMAC mode and that such use should continue to be supported by proofs of security. We supply
these proofs.

We also provide provable support the use of Skein as a PRNG and as a stream cipher.

Figure 1 summarizes the provable security results about Skein. We now discuss these items in more
detail.
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Skein property / mode Assumption on atomic primitive

Hash (collision-resistance) C is collision resistant

PRF, KDF, MAC, HMAC, PRNG, stream cipher Threefish is a (tweakable) PRP

Indifferentiability from RO Threefish is an ideal (tweakable) cipher

Figure 1: Summary of provable security attributes of Skein. For each property we indicate the
assumption on the atomic primitive under which it is established. Here C is the compression
function.

1.2 Provable Properties of Skein

Collision Resistance. We prove that if the compression function is collision resistant then
so is Skein. (Referring to the above discussion, here S is the collision resistance of Skein and A
is the collision resistance of the compression function.) The implication is that it is no easier
to find collisions for Skein than for its compression function. Given that (strengthened) Merkle-
Damg̊ard [11, 21], used in the SHA family, is backed by a similar security guarantee, such a
guarantee would seem to be a necessary requirement for a new hash function. We are asserting
that we can provide this.

PRF, MAC, and KDF. We prove that if Threefish is a tweakable PRP (pseudorandom permu-
tation) then Skein is a PRF. It is important to understand that we are referring, in this context,
to the keyed version of Skein. The PRF property is that the input-output behavior of keyed Skein
should look like that of a random function to an attacker who is not given the key. This proof
supports the usage of keyed Skein for key derivation (KDF). It also supports the use of keyed Skein
as a MAC. This is true because any PRF is a secure MAC [4].

The PRF property reflects the increased versatility of Skein compared to the SHA family. The
functions in the latter family are not PRFs. (When keyed in the natural way, namely, via the
initial vector.) This is because of the extension attack.

We highlight an attractive feature of the proof of PRF security. Namely, the assumption made
pertains to the (tweakable) block cipher rather than to the compression function, and, moreover,
is in fact the standard assumption on this object, namely, that it is a PRP. Indeed, in the case of
other modes such as EMD [5] which are PRF preserving, the assumption is that the compression
function is a PRF, which relies on the underlying block cipher being a PRF when keyed through the
message rather than the key port. The difference in the case of Skein arises because the compression
function runs the block cipher in Matyas-Meyer-Oseas mode [19].

We emphasize that we provide provable support for the use of keyed Skein as a MAC. This is by
dint of the fact that we show that keyed Skein is a secure MAC under the assumption that Threefish
is a PRP. (This in turn is because, as indicated above, under this assumption, keyed Skein is a
PRF, and any PRF is a secure MAC.)

A novel feature of Skein in these modes is the variable output length. The desired output length
is one of the inputs to the hash function. Skein has been designed so that its output values are
independent for different values of this output length parameter, even if other inputs (such as the
message) are the same. This attribute of Skein is also supported by the security proofs. We define
the (new) concept of a VOL (Variable Output Length) PRF. This is what the proofs show Skein

2



to achieve under the assumption that Threefish is a PRP.

Keyed Skein is a fast alternative to HMAC-Skein with regard to providing a PRF and secure MAC.
To support legacy applications, however, we will also support HMAC-Skein via proofs.

Indifferentiability from a Random Oracle. We prove that the Skein mode of operation
preserves indifferentiability from a random oracle. This has, since [10, 5], become an important
requirement for hash functions due to their use for instantiating random oracles.

What the results says is that if we replace Threefish with an ideal block cipher, then the resulting
hash function produced by the Skein mode of operation is what is called a pseudorandom oracle
(PRO). This means it is indifferentiable from a random oracle. Indifferentiability [20, 10] is a
technical term underlain by a formal definition. If a function is indifferentiable from a random
oracle, it means that we can securely replace a random oracle with this function in most (not all)
usages of the random oracle.

This can be viewed as saying that the Skein mode of operation has no structural weaknesses. It is
evidence that attacks that differentiate it from a random oracle, such as the extension attack, are
absent.

We should, however, add a word of warning and explanation. The result pertains to the mode
of operation and not to the block cipher. The latter has been replaced by an ideal block cipher.
The subtle point here is that there is no formal notion or assumption that we can state to capture
“Threefish is, or approximates, an ideal block cipher”. This is different from the other results
discussed above. It is for example perfectly meaningful to say that Threefish is a PRP. We emphasize
that the subtleties associated to indifferentiability are not peculiar to our results but rather endemic
to the notion as a whole. They are, and will be, present for any hash function for which a proof of
indifferentiability from a random oracle is supplied.

All this withstanding, the general consensus in the community is that indifferentiability buys you
something. It is just difficult to formally say exactly what.

Support for HMAC Mode. Current hash functions are used in HMAC mode to obtain a MAC
or a PRF. The widespread standardization and use of HMAC means that this represents a large
and important domain of hash function usage. (HMAC is standardized via an IETF RFC [17],
a NIST FIPS [16] and ANSI X9.71 [15]. It is in IEEE 802.11. It is implemented in SSL, SSH,
IPsec and TLS amongst other places.) It is thus important that any new hash function continue
to support usage in HMAC mode.

The issue this raises with regard to proofs is as follows. For hash functions that use Merkle-
Damg̊ard [11, 21] mode (in particular the MD and SHA families), HMAC mode is supported by
proofs [2, 1] which arguably played an important role in the widespread and continuing adoption
of HMAC. Current support for HMAC in this domain is represented by [1] who showed that
HMAC with a Merkle-Damg̊ard hash function is a secure PRF (and hence MAC) assuming that
the compression function is itself a secure PRF. If Skein is to become a replacement for current
hash functions, it is important that we provide a similar provable guarantee for its usage in HMAC
mode. But since our underlying iteration method is not Merkle-Damg̊ard, the previous proofs do
not apply.

Our contribution in this regard is to supply new proofs. These show the analog of the above-
mentioned result. Namely, if the compression function is a PRF then so is HMAC-Skein. This
means that Skein has the same provable guarantees in HMAC mode as existing hash functions.

As a result, there are two different modes of operation in which Skein can provide a PRF or
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MAC: HMAC mode and Skein’s native keyed mode as discussed above. The latter is faster. How-
ever, the former needs to be supported for legacy reasons.

PRNG and Stream Cipher. The target security property for a stream cipher is that of [9, 24].
(The output on input a random seed should be computationally indistinguishable from random.)
The target for the PRNG is that it should be forward-secure as defined by [7]. We prove both these
properties under the assumption that Threefish is a PRP.

1.3 Plan

The design of Skein is modular. The base primitive is a tweakable block cipher. From this is built
a tweakable compression function. The latter is iterated in a mode called UBI. Skein itself is built
through invocations of UBI. We approach the proofs in a way that is similarly modular. Rather
than proving properties of Skein directly (which would result in complex proofs), we establish
properties of the lower-level primitives and propagate them upwards. Thus we will begin with the
tweakable compression function then move to UBI and finally Skein.

2 Definitions

If M is a string then |M | denotes its length. If a1, . . . , an are strings then a1‖ · · · ‖an denotes their
concatenation. If M is a string with length a positive multiple of l, then we let |M |l = |M |/l and
let M [i, l] denote the i-th l-bit block of M , meaning M = M [1, l]‖ · · · ‖M [m, l] where m = |M |l.
We fix throughout an integer b referred to as the block length and abbreviate M [i, b] by M [i]. We
use IntToStrl(N), N is an integer, to denote the encoding of N mod 2l as an l-bit string. If i, j are
positive integers and Y is a string, where i ≤ j ≤ |Y |, then Y [i . . . j] denotes the substring of Y
beginning at bit position i and ending at bit position j.

If X is a set, then X+ denotes the set of all sequences (tuples) over X . The length of a sequence
is defined as the sum of the lengths of its components.

If f : D1 × · · · ×Dn → D is a function then fK : D2 × · · · ×Dn → D is the function defined by
fK(x2, . . . , xn) = f(K,x2, . . . , xn) for all K ∈ D1 and (x2, . . . , xn) ∈ D2 × · · · ×Dn.

We say that f : D0 × · · · × Dn → {0, 1}
∗ is a variable output length (VOL) function if D0 ⊆ N

and |f(N,x1, . . . , xn)| = N for all N ∈ D0 and all (x1, . . . , xn) ∈ D1 × · · · ×Dn.

Let E : {0, 1}b ×{0, 1}t ×{0, 1}b → {0, 1}b be a map that takes a b-bit key K, a t-bit tweak T, and
a b-bit input X to return a b-bit output E(K,T,X). We say that E is a tweakable block cipher [18]
if the map E(K,T, ·) is a permutation on {0, 1}b for all K,T.

A tweakable compression function is simply a map TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b.
The first input is a key or the chaining variable, depending on usage. The second input is the
tweak.

Throughout this paper we assume for simplicity that b and t are both multiples of 8, that b ≥ 256,
and that t ≥ 128; the results herein are, however, generalizable beyond these restrictions.

Games. Our security definitions and proofs use code-based games [6], and so we recall some
background from [6]. A game has an Initialize procedure, procedures to respond to adversary
oracle queries, and (sometimes) a Finalize procedure. A game G is executed with an adversary A
as follows. First, Initialize executes, and its outputs are the inputs to A. Then A executes,
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its oracle queries being answered by the corresponding procedures of G. If there is no Finalize
procedure, then when A terminates, its output is also called the output of the game. If there
is a Finalize procedure, then when A terminates, its output becomes the input to the Finalize
procedure. In this case the output of Finalize is called the output of the game. In either case, we
let GA ⇒ y denote the event that this game output takes value y. The boolean flag bad is assumed
initialized to false. Games G, H are identical-until-bad if their code differs only in statements that
follow the setting of bad to true. We say that “GA sets bad” to denote the event that game G, when
executed with adversary A, sets bad to true. It is shown in [6] that if G,H are identical-until-bad
and A is an adversary, then

Pr
[

GA sets bad
]

= Pr
[

HA sets bad
]

. (1)

The fundamental lemma of game-playing [6] says that if G,H are identical-until-bad then

Pr
[

GA ⇒ y
]

− Pr
[

HA ⇒ y
]

≤ Pr
[

GA sets bad
]

.

Stateful Algorithms. We say that an algorithm is stateful if it maintains state across invoca-
tions. When run on some input the algorithm computes a response as a function of the input and
its current state and also updates its state. We model “ideal” primitives via stateful algorithms.
For example, an ideal tweakable block cipher with key and block length b and tweak length t is the
stateful algorithm P that maintains state consisting of a pair E,E−1 of tables initially undefined
everywhere. On input c, (K,T,Z), where c ∈ {+1,−1}, K,Z ∈ {0, 1}b, and T ∈ {0, 1}t, P does the
following:

If c = +1 then
x← Z
If not E(K,T, x) then

y
$

← {0, 1}b\{ E(K,T, x′) : x′ ∈ {0, 1}b } ; E(K,T, x)← y ; E−1(K,T, y)← x
Return E(K,T, x)

If c = −1 then
y ← Z
If not E−1(K,T, y) then

x
$

← {0, 1}b\{ E−1(K,T, y′) : y′ ∈ {0, 1}b } ; E−1(K,T, y)← x ; E(K,T, x)← y
Return E−1(K,T, y)

Similarly a RO with range D is the stateful algorithm R that maintains a table T , initially undefined
everywhere, and responds to query x via

If not T [x] then T [x]
$

← D
Return T [x]

The Cascade Construction. The Cascade (or un-strengthened MD [11, 21]) transform takes
a compression function Comp : {0, 1}b × X → {0, 1}b and returns the function Comp∗ : {0, 1}b

×X+ → {0, 1}b defined in Figure 2.

3 Constructions

Threefish. Threefish [14] is a tweakable block cipher E : {0, 1}b×{0, 1}t×{0, 1}b → {0, 1}b with
t = 128 and b ∈ {256, 512, 1024}.
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Function Comp∗(K, (X1, . . . ,Xm))
h0 ← K
For i = 1, . . . ,m do hi ← Comp(hi−1,Xi)
Return hm

Figure 2: The Cascade transform associates to compression function Comp : {0, 1}b×X → {0, 1}b

the function Comp∗ : {0, 1}b ×X+ → {0, 1}b defined above.

TComp. Our tweakable compression function TComp is obtained by running the tweakable block
cipher E in Matyas-Meyer-Oseas [19] mode. Specifically, the associated tweakable compression
function TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b is defined by

TComp(K,T,X) = E(K,T,X) ⊕X . (2)

This is an important feature that allows us to eventually prove that Skein as a PRF based on an
assumption (and moreover, the standard one) about the underlying block cipher rather than on an
assumption on the compression function, the latter being the case for the bulk of hash functions.

Unique Block Iteration (UBI). Unique Block Iteration (UBI ) is a transform that takes a
tweakable compression function TComp : {0, 1}b×{0, 1}t×{0, 1}b → {0, 1}b and returns a function
f : {0, 1}b×MsgSp×TypeSp×{0, 1}7× [0, 2t−32−1]→ {0, 1}b. The message space MsgSp is the set
of all strings of length at most (2t−32−1)23 bits. The type space TypeSp is the set of all 6-bit strings.
The fourth parameter will later be used to encode the level in a hash tree, and the fifth parameter
will be used to encode the starting offset of a hash computation. The function f is defined in Figure 3
along with the subroutine Encode that it invokes. The Encode function also invokes a subroutine
MkTw (make-tweak). This is a map MkTw : {0, 1}×{0, 1}×{0, 1}6×{0, 1}×{0, 1}7×[0, 2t−32−1]→
{0, 1}t. Our only assumption on this map is that it is injective. An example instantiation achieving
this is

MkTw(fin, fir, type, bitpad, lvl,L) = fin‖fir‖type‖bitpad‖lvl‖016‖IntToStrt−32(L) .

SSkein. SSkein is a transform that takes a function f : {0, 1}b × MsgSp × TypeSp × {0, 1}7 ×
[0, 2t−32−1]→ {0, 1}b and returns a function SSkein : OutLens×{0, 1}b×((TypeSp−{TyCfg,TyOut})
× MsgSp)∗ → {0, 1}∗. The message space MsgSp is the set of all strings of length at most
(2t−32 − 1)23 bits. The type space TypeSp is the set of all 6-bit strings, and TyCfg,TyOut are
two distinct, fixed 6-bit strings. The first parameter to SSkein is the output length in bits, namely,
|SSkein(N, ·, ·)| = N. Here OutLens is defined as the set { 8i : i ∈ [0, 264 − 1] }, though in [14] it is
defined as { i : i ∈ [0, 264] }. The function SSkein is defined in Figure 4 along with the subroutine
Output that it invokes. The function SSkein also invokes a subroutine SMkConfig (make-config).
This is a map SMkConfig : OutLens→ {TyCfg} × {0, 1}256. Our only assumption is that this map
is injective. An example instantiating this is

SMkConfig(N) = (TyCfg, 064‖IntToStr64(N/8)‖08‖08‖08‖0104) .

4 Encoding Lemmas

Definitions. Let M1 = (M1
1 , . . . ,M1

m1),M
2 = (M2

1 , . . . ,M2
m2) ∈ X

+ for some set X . We say that
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Function f(K,M, type, lvl, startl)
(M,T1, . . . ,Tm)←

Encode(M, type, lvl, startl)
h0 ← K
For i = 1, . . . ,m do

hi ← TComp(hi−1,Ti,M[i])
Return hm

Function Encode(M, type, lvl, startl)
bitpad← 0
If |M| mod 8 6= 0 then

bitpad← 1 ; s← 7− (|M| mod 8) ; M← M‖1‖0s

L← |M|/8
If |M| = 0 then M← 0b

Else
If |M| mod b = 0 then s← 0
Else s← b− (|M| mod b)
M← M‖0s

m← |M|b ; l0 ← startl
If m = 1 then

Tm ← MkTw(1, 1, type, bitpad, lvl,L + startl mod 2t−32)
Else

l1 ← l0 + (b/8) ; T1 ← MkTw(0, 1, type, 0, lvl, l1 mod 2t−32)
For i = 2, . . . ,m− 1 do

li ← li−1 + (b/8)
Ti ← MkTw(0, 0, type, 0, lvl, li mod 2t−32)

Tm ← MkTw(1, 0, type, bitpad, lvl,L + startl mod 2t−32)
Return (M,T1, . . . ,Tm)

Figure 3: The UBI transform associates to tweakable compression function TComp : {0, 1}b ×
{0, 1}t×{0, 1}b → {0, 1}b the function f : {0, 1}b×MsgSp×TypeSp×{0, 1}7×[0, 2t−32−1]→ {0, 1}b

defined above.

Function SSkein(N,K, ((type1,M1), . . . , (typer,Mr)))
// r ≥ 0 ; TyCfg, TyOut 6∈ {type

1
, . . . , type

r
} ; |K| = b

h−1 ← K
(type0,M0)← SMkConfig(N)
For i = 0, . . . , r do

hi ← f(hi−1,Mi, typei, 0
7, 0)

h← Output(hr,N)
Return h

Function Output(h,N)
// |h| = b ; N ∈ OutLens
y ← ε
d← ⌈N/b⌉
For i = 1, . . . , d do

y ← y‖f(h, IntToStr64(i),TyOut, 07, 0)
h← y[1 . . . N]
Return h

Figure 4: The SSkein transform associates to the function f : {0, 1}b×MsgSp×TypeSp×{0, 1}7×
[0, 2t−32 − 1] → {0, 1}b the function SSkein : OutLens × {0, 1}b × ((TypeSp − {TyCfg,TyOut}) ×
MsgSp)∗ → {0, 1}∗ defined above.
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M1 is a prefix of M2, written M1 ≤P M2, if m1 ≤ m2 and M1[i] = M2[i] for all i ∈ {1, . . . ,m1}.
If M1 is not a prefix of M2, we write M1 6≤P M2.

Let M1 = (M1
1 , . . . ,M1

m1
),M2 = (M2

1 , . . . ,M2
m2

) ∈ X+ for some set X . We say that M1 is a suffix
of M2, written M1 ≤S M2, if m1 ≤ m2 and M1[i] = M2[i + m2 −m1] for all i ∈ {1, . . . ,m1}. If
M1 is not a suffix of M2, we write M1 6≤S M2.

Properties of Encode. We say that 4-tuple (M, type, lvl, startl) is start-respecting if startl is a
multiple of b/8, startl = 0 whenever M = ε, and |M| + startl · 23 ≤ (2t−32 − 1)23. Without the
start-respecting restriction, it may be possible for Encode to output the same values on input two
distinct tuples (M1, type1, lvl1, startl1) and (M2, type2, lvl2, startl2).

We now state the following lemmas:

Lemma 4.1 Let (M1, type1, lvl1, startl1) and (M2, type2, lvl2, startl2) be distinct start-respecting 4-
tuples and let

(M1, T
1
1 , . . . , T 1

m1
)← Encode(M1, type1, lvl1, startl1)

(M2, T
2
1 , . . . , T 2

m2
)← Encode(M2, type2, lvl2, startl2)

For i = 1, . . . ,m1 do M∗

i ← (T 1
i ,M1[i])

For i = 1, . . . ,m2 do N∗

i ← (T 2
i ,M2[i])

M∗ ← (M∗

1 , . . . ,M∗

m1
)

N∗ ← (N∗

1 , . . . , N∗

m2
)

Then M∗ 6≤P N∗.

Proof: If m1 < m2, then M∗ 6≤P N∗ because T 1
m1

has the final bit set but T 2
m1

does not. If
type1 6= type2 or lvl1 6= lvl2, then M∗ 6≤P N∗ because the tweaks encode these values.

Suppose now that m1 = m2, type1 = type2, and lvl1 = lvl2. If M1 6= M2 and startl1 = startl2,
then M∗ 6≤P N∗ since either the final lengths or bit-padding fields will encode a difference or
M1[i] 6= M2[i] for some index i ∈ {1, . . . ,m1}. If M1 = M2 and startl1 6= startl2, then M∗ 6≤P N∗

since the final lengths will encode a difference.

If M1 6= M2 and startl1 6= startl2 we must be more careful. If m1 = m2 > 1 then T 1
1 6= T 2

1 since
the first tweak will encode a different length and hence M∗ 6≤P N∗. So suppose m1 = m2 = 1.
If M1 6= ε and M2 6= ε then T 1

1 6= T 2
1 since the first tweak will encode a different length (under

the assumption that the starting length values are all multiples of b/8) and hence M∗ 6≤P N∗. If
without loss of generality M1 = ε, then startl1 = 0 by assumption and T 1

1 6= T 2
1 since the first (and

only) tweak will encode a different length and hence M∗ 6≤P N∗.

Lemma 4.2 Let (M1, type1, lvl1, startl1) and (M2, type2, lvl2, startl2) be distinct start-respecting 4-
tuples and let

(M1, T
1
1 , . . . , T 1

m1
)← Encode(M1, type1, lvl1, startl1)

(M2, T
2
1 , . . . , T 2

m2
)← Encode(M2, type2, lvl2, startl2)

For i = 1, . . . ,m1 do M∗

i ← (T 1
i ,M1[i])

For i = 1, . . . ,m2 do N∗

i ← (T 2
i ,M2[i])

M∗ ← (M∗

1 , . . . ,M∗

m1
)

N∗ ← (N∗

1 , . . . , N∗

m2
)
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Then M∗ 6≤S N∗.

Proof: The proof of Lemma 4.2 is identical to the proof of Lemma 4.1, except with the first bit
playing the role of the final bit in the case where m1 < m2 (because T 1

1 has the first bit set but
T 2

1+m2−m1
does not).

5 Collision Resistance

5.1 Definitions

Let f : D1 × D2 × · · · × Dd → {0, 1}
n be a function. A CR-adversary A is a randomized al-

gorithm that does not take any input and that returns a pair of distinct tuples (x1, x2, . . . , xd),
(x′

1, x
′

2, . . . , x
′

d) ∈ D1×D2× · · · ×Dd. Let Advcr
f (A) denote the probability, over the random coins

for A, that f(x1, x2, . . . , xd) = f(x′

1, x
′

2, . . . , x
′

d).

5.2 Collision Resistance for TComp

Collision resistance of Skein is proved based on the collision resistance of TComp. This proof is in
the standard (i.e., not RO) model. In the standard model we know of no proof of CR of TComp
based on a standard assumption on the tweakable block cipher. But we note that TComp can
be proved collision resistant if the tweakable block cipher is ideal (extending [8] to the tweakable
setting).

5.3 Collision Resistance for UBI

We show that UBI preserves collision-resistance, meaning that if TComp is CR then f is also CR
against startl-restricted adversaries. In saying TComp is CR we regard it simply as a 3-argument
function, meaning a collision is any pair of distinct triples on which TComp has the same output.
Similarly, a startl-restricted collision against f is any pair of distinct 5-tuples ((K1,M1, type1, lvl1,
startl1), (K2,M2, type2, lvl2, startl2)) on which f has the same output, under the restriction that
startl1 = startl2.

Theorem 5.1 Let TComp : {0, 1}b ×{0, 1}t ×{0, 1}b be a tweakable compression function and let
f : {0, 1}b ×MsgSp × TypeSp × {0, 1}7 × [0, 2t−32 − 1] → {0, 1}b be obtained by applying the UBI
transform to TComp as per Figure 3. Let A be a startl-restricted CR-adversary against f. Let B be
the CR-adversary against TComp as defined in Figure 5. Then

Advcr
f (A) ≤ Advcr

TComp(B) .

Further, the running time of B is that of A plus the time for m1 +m2 applications of TComp, where
m1 and m2 are as in Figure 5.

Proof: Suppose (K1,M1, type1, lvl1, startl1) 6= (K2,M2, type2, lvl2, startl2), startl1 = startl2, and f(K1,
M1, type1, lvl1, startl1) = f(K2,M2, type2, lvl2, startl2).

9



Adversary B

((K1,M1, type1, lvl1, startl1), (K2,M2, type2, lvl2, startl2))
$

← A
For j = 1 to 2 do

(M
j
,Tj

1, . . . ,T
j

mj )← Encode(Mj , typej , lvlj , startlj)

hj
0 ← Kj

For i = 1, . . . ,mj do hj
i ← TComp(hj

i−1,T
j
i ,M

j
[i])

For i = 0 to min(m1,m2)− 1 do

If (h1
m1

−i−1,T
1
m1

−i
,M

1
[m1 − i]) 6= (h2

m2
−i−1,T

2
m2

−i
,M

2
[m2 − i]) then

return (h1
m1

−i−1,T
1
m1

−i
,M

1
[m1 − i]), (h2

m2
−i−1,T

2
m2

−i
,M

2
[m2 − i])

Figure 5: Adversary B referred to in Theorem 5.1. The function Encode is defined as in Figure 3.

Consider the final for loop of B. Let i ∈ {0, . . . ,min(m1,m2)− 1} be the least value such that

(h1
m1

−i−1,T
1
m1

−i,M
1
[m1 − i]) 6= (h2

m2
−i−1,T

2
m2

−i,M
2
[m2 − i])

Such an index exists for reasons we explain below. By the choice of i and since f(K1,M1, type1, lvl1,
startl1) = f(K2,M2, type2, lvl2, startl2), it follows that h1

m1
−i

= h2
m2

−i
. Therefore TComp(h1

m1
−i−1,

T1
m1

−i
,M

1
[m1 − i]) = TComp(h2

m2
−i−1,T

2
m2

−i
,M

2
[m2 − i]) and B outputs a collision.

To justify the existence of such an index i, we consider several cases. Clearly if type1 6= type2

or lvl1 6= lvl2, then such an index i exists because of the injectivity of the function MkTw which
Encode invokes. So assume type1 = type2 and lvl1 = lvl2. By the startl-restriction assumption
on A, startl1 = startl2. Consider the case where |M1| = |M2|. By the definition of a collision for A,
K1 6= K2 or M1 6= M2 or both and thus the chaining values are different for index i = m1 − 1

(if K1 6= K2) or there exists an index i such that M
1
[i] 6= M

2
[i] (if M1 6= M2). Consider now

the case where |M1| 6= |M2|. Then (M
1
[m1],T1

m1) 6= (M
2
[m2],T2

m2) because of Encode. Here we
must consider multiple cases, corresponding to whether M1 or M2 is bit-padded. If neither are
bit-padded, then the lengths encoded in T1

m1 and T2
m2 will be different. If both are bit-padded,

then M
1
[m1] 6= M

2
[m2] or the final encoded lengths are different. If only one is bit-padded, then

the bit padding flag will only be set for one of the tweak values.

5.4 Collision Resistance for SSkein

We now show that SSkeinpreserves collision-resistance, meaning that if f is CR against startl-
restricted adversaries as defined in Section 5.3, then H(·, ·) = SSkein(N, ·, ·) is also CR where N is
any output length at least b. (By definition, an N-bit output does not collide with an N′-bit output
when N 6= N′.)

Theorem 5.2 Let f : {0, 1}b × MsgSp × TypeSp × {0, 1}7 × [0, 2t−32 − 1] → {0, 1}b be the UBI
compression function and let SSkein : OutLens×{0, 1}b×((TypeSp−{TyCfg,TyOut})×MsgSp)∗ →
{0, 1}∗ be the VOL function defined from f as per Figure 4. Let H(·, ·) = FSkein(N, ·, ·) for some
fixed N ≥ b. Let A be a CR-adversary against H. Let B be the startl-restricted CR-adversary against
f as defined in Figure 6. Then

Advcr
H (A) ≤ Advcr

f (B) .

10



Adversary B

(K1, ((type1
1,M

1
1), . . . , (type1

r1,M
1
r1))), (K

2, ((type2
1,M

2
1), . . . , (type2

r2 ,M
2
r2)))

$

← A
For j = 1 to 2 do

hj
−1 ← Kj

(typej
0,M

j
0)← SMkConfig(N)

typej
r+1 ← TyOut ; Mj

r+1 ← IntToStr64(1)
For i = 0, . . . , rj + 1 do

hj
i ← f(hj

i−1,M
j
i , typej

i , 0
7, 0)

For i = −1 to min(r1, r2)
If (h1

r1
−i−1,M

1
r1

−i
, type1

r1
−i

) 6= (h2
r2

−i−1,M
2
r2

−i
, type2

r2
−i

) then

(*) return (h1
r1

−i−1,M
1
r1

−i
, type1

r1
−i

, 07, 0), (h2
r2

−i−1,M
2
r2

−i
, type2

r2
−i

, 07, 0)

Figure 6: Adversary B referred to in Theorem 5.2.

Further, the running time of B is that of A plus the time for r1 + r2 + 4 applications of f, where r1

and r2 are as in Figure 6.

Proof: Suppose A returns a collision against H. Then SSkein(N,K1, ((type1
1,M

1
1), . . . , (type1

r1,M
1
r1))) =

SSkein(N,K2, ((type2
1,M

2
1), . . . , (type2

r2,M
2
r2))). Consequently h1

r1+1 = h2
r2+1.

Consider the final for loop in B. The loop iterates i from −1 to min(r1, r2). A loop invariant is
that, at the beginning of each loop and prior to the loop’s exit, h1

r1
−i

= h2
r2

−i
. This follows since

the conditional in the loop checks for h1
r1−i−1 = h2

r2−i−1 and returns if not equal.

If the loop exits early, then the precondition for this return, combined with the loop invariant,
ensures that the returned value is a collision for f. It remains to show that the loop will exit early
if A returns a collision.

First, if r1 6= r2, then type1
r1

−min(r1,r2) 6= type2
r2

−min(r1,r2) since only type1
0 and type2

0 can be the
TyCfg type. Hence, if a previous iteration of the loop has not already returned a collision, then the
iteration with i = min(r1, r2) will return a collision.

Suppose henceforth that r1 = r2. If K1 6= K2, then the loop will return during its last iteration
unless a previous iteration of the loop already returned. If there exists an index r′ ∈ {1, . . . , r1}
such that type1

r′ 6= type2
r′ , then the loop will execute return at index i = r1 − r′ unless a previous

iteration of the loop already returned.

Henceforth suppose also that K1 = K2 and type1
r′ = type2

r′ for all r′ ∈ {1, . . . , r1}. Since A returned
a collision, there must exist an index r′ ∈ {1, . . . , r1} such that M1

r′ 6= M2
r′ . The loop will therefore

return early at index i = r1 − r′ unless a previous iteration of the loop already returned.
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Game Realf

Procedure Initialize

K
$

← D1

Procedure Fn(x2, . . . , xn)
Return f(K,x2, . . . , xn)

Game RandD

Procedure Initialize

Procedure Fn(x2, . . . , xn)

Return y
$

← D

Figure 7: Games Realf and RandD for the definition of a pseudorandom function (PRF).

Game Realf

Procedure Initialize

K
$

← D1

Procedure Fn(x)
Return f(K,x)

Game PermD

Procedure Initialize
R← ∅

Procedure Fn(x)

y
$

← D\R ; R← R ∪ {y}
Return y

Figure 8: Games Realf and PermD for the definition of a pseudorandom permutation (PRP).

6 Pseudorandomness

6.1 Definitions and Tools

A prf-adversary against f : D1 × · · · ×Dn → D has access to one oracle and outputs a bit. Each
oracle query must have the form x2, . . . , xn where (x2, . . . , xn) ∈ D2 × · · · × Dn and the queries
must all be distinct. Its advantage is

Advprf
f (A) = Pr

[

RealAf ⇒ 1
]

− Pr
[

RandA
D ⇒ 1

]

where games Realf and RandD are shown in Figure 7.

A prp-adversary against f : D1 ×D → D has access to one oracle and outputs a bit. Each oracle
query must be a member of D and the queries must be all distinct. Its advantage is

Advprp
f (A) = Pr

[

RealAf ⇒ 1
]

− Pr
[

PermA
D ⇒ 1

]

where games Realf and PermD are shown in Figure 8.

A vol-prf-adversary against a VOL function F : D0×D1×· · ·×Dn → {0, 1}
∗ has access to one oracle

and outputs a bit. Each oracle query must have the form N,x2, . . . , xn where N ∈ D0 ⊆ Z+ ∪ {0}
and (x2, . . . , xn) ∈ D2 × · · · ×Dn and the queries must all be distinct. Its advantage is

Advvol-prf
F (A) = Pr

[

RealAF ⇒ 1
]

− Pr
[

RandA ⇒ 1
]

where games RealF and Rand are shown in Figure 9.
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Game RealF

Procedure Initialize

K
$

← D1

Procedure Fn(N,x2, . . . , xn)
Return F (N,K, x2, . . . , xn)

Game Rand

Procedure Initialize

Procedure Fn(N,x2, . . . , xn)

Return y
$

← {0, 1}N

Figure 9: Games RealF and Rand for the definition of pseudorandomness for a VOL function
(VOL-PRF).

Pseudorandomness and the Cascade Construction. In our proofs we will use a result
from [3] on the Cascade transform, which takes a compression function Comp : {0, 1}b×X → {0, 1}b

and returns the function Comp∗ : {0, 1}b ×X+ → {0, 1}b defined in Figure 2. An extension attack
can be applied to show that Comp∗ is not a PRF even if Comp is a PRF. However, Comp∗ is a PRF
as long as no message to which it is applied is a prefix of another. We will use this fact from [3] to
prove Theorem 6.3 and Theorem 6.4.

A prf-adversary B against Comp∗ is said to be prefix-free if M1 6≤P M2 for any two different oracle
queries M1,M2 of B.

Lemma 6.1 (From [3]) Let Comp : {0, 1}b × X → {0, 1}b be a compression function and let
Comp∗ be obtained by applying the Cascade transform to Comp. Let B∗ be a prefix-free prf-
adversary against Comp∗ making q oracle queries, each of length at most s elements from X . Then
there is a prf-adversary B against Comp such that

Advprf
Comp∗

(B∗) ≤ qs ·Advprf
Comp(B) .

Furthermore B makes qs oracle queries and its running time is that of B∗ plus O(q(log q)(s+b+x)),
where x is the longest string in X .

6.2 Pseudorandomness of TComp

Proposition 6.2 Let E : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b be a tweakable block cipher and let
TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b be defined by

TComp(K,T,X) = E(K,T,X) ⊕X .

Let ATComp be a prf-adversary against TComp that makes q oracle queries. Then there is a prp-
adversary AE against E such that

Advprf
TComp(ATComp) ≤ Advprp

E (AE) +
q2

2b+1
.

Furthermore, AE makes q oracle queries and its running time is that of ATComp plus O(q(b + t)).

Proof: AE runs ATComp. When the latter makes an oracle query (T,X), adversary AE queries
(T,X) to its own oracle and gets back a value it denotes Y and then returns Y ⊕X to ATComp. It
outputs whatever ATComp outputs. The analysis is standard and uses (an extension to the tweakable
settings of) the PRP/PRF Switching Lemma [6].

13



6.3 Pseudorandomness for UBI

We say that a PRF adversary against UBI is start-respecting if all its oracle queries are start-
respecting. We claim that UBI is PRF-preserving against start-respecting adversaries. This means
that if TComp is a PRF then so is f. This is implied by the following.

Theorem 6.3 Let TComp : {0, 1}b×{0, 1}t×{0, 1}b → {0, 1}b be a tweakable compression function
and let f : {0, 1}b × MsgSp × TypeSp × {0, 1}7 × [0, 2t−32 − 1] → {0, 1}b be obtained by applying
the UBI transform to TComp as per Figure 3. Let A be a start-respecting prf-adversary against f
that makes q oracle queries, the message field of each query of length at most L. Then there is a
prf-adversary B against TComp such that

Advprf
f (A) ≤ sq ·Advprf

TComp(B)

where s = ⌈L/b⌉. Furthermore, the running time of B is that of A plus O(q(log q)(s + b + t)).

Proof: Let X = {0, 1}t × {0, 1}b and define Comp : {0, 1}b ×X → {0, 1}b by

Comp(h, (T,X)) = TComp(h, T,X)

for all h,X ∈ {0, 1}b and T ∈ {0, 1}t.

Now define B∗ as follows against Comp∗, the Cascade transform of Comp (Figure 2). B∗ runs A.
When the latter makes an oracle query (M, type, lvl, startl), adversary B∗ computes M∗ ∈ X+ as
follows:

(M,T1, . . . , Tm)← Encode(M, type, lvl, startl)
For i = 1, . . . ,m do M∗

i ← (Ti,M [i])
M∗ ← (M∗

1 , . . . ,M∗

m)

B∗ invokes its own oracle on M∗ to get back a response Y , and returns Y to A as the response to
its query M . When A halts with output a bit, B∗ halts with the same output.

This construction guarantees that

Advprf
Comp∗

(B∗) = Advprf
f (A) . (3)

On the other hand, Lemma 4.1 guarantees that B∗ is prefix-free, regardless of the queries made
by A, so we can apply Lemma 6.1. Let D be the resulting prf-adversary against Comp. We now
transform D into a prf-adversary B against TComp such that

Advprf
TComp(B) = Advprf

Comp(D) . (4)

The theorem follows from Equation (5), Equation (6), and Lemma 6.1. It remains to describe B.

B runs D. When the latter makes an oracle query W ∈ X , adversary B parses it as W = (T,X)
with |T | = t and |X| = b. It calls its own oracle on T,X and returns the answer to D.
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6.4 Pseudorandomness for SSkein

It is possible to prove the pseudorandomness of SSkein with a reduction from the pseudorandomness
of UBI. For a tighter bound, we state and prove a reduction from the pseudorandomness of SSkein’s
underlying compression function.

Theorem 6.4 Let TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b be a tweakable compression func-
tion. Let f : {0, 1}b × MsgSp × TypeSp × {0, 1}7 × [0, 2t−32 − 1] → {0, 1}b be obtained by ap-
plying the UBI transform to TComp per Figure 3. Let SSkein : OutLens × {0, 1}b × ((TypeSp −
{TyCfg,TyOut}) × MsgSp)∗ → {0, 1}∗ be the VOL function defined from f as per Figure 4. Let
ASSkein be a vol-prf-adversary against SSkein that makes at most q oracle queries, where the i-th
query consists of an integer (the output length value) that is at most Ni and a list of at most l pairs,
with each message in a pair at most l′ bits long. Then there is a prf-adversary ATComp such that

Advvol-prf
SSkein (ASSkein) ≤ q′

(

l · ⌈l′/b⌉+ 3
)

·Advprf
TComp(ATComp) ,

where q′ =
∑q

i=1⌈Ni/b⌉. Furthermore, ATComp makes at most q′(l · ⌈l′/b⌉ + 3) oracle queries and
its running time is that of ASSkein plus O(q′(log q′)(l · ⌈l′/b⌉ + b + t)).

Proof: Let X = {0, 1}t × {0, 1}b and define Comp : {0, 1}b ×X → {0, 1}b by

Comp(h, (T,X)) = TComp(h, T,X)

for all h,X ∈ {0, 1}b and T ∈ {0, 1}t.

Now define B∗ as follows against Comp∗, the Cascade transform of Comp (Figure 2). B∗ runs
ASSkein. When the latter makes an oracle query (N, (type1,M1), . . . , (typer,Mr)), adversary B∗

computes M i ∈ X+, i ∈ {1, . . . , ⌈N/b⌉}, as follows:

y ← ε
type0 ← TyCfg
M0 ← SMkConfig(N)
d← ⌈N/b⌉
For i = 1, . . . , d do

Mr+1 ← IntToStr64(i)
typer+1 ← TyOut
m← 1
For j = 0, . . . , r + 1 do

(M ′, T1, . . . , Tm′)← Encode(Mj, typej, 0
7, 0)

For k = 1, . . . ,m′ do Nm ← (Tk,M
′[k]) ; m← m + 1

M i ← (N1, . . . , Nm)

B∗ invokes its own oracle on M1, . . . ,Md to get back responses Y1, . . . , Yd, and returns the first N
bits of Y 1‖ · · · ‖Y d to ASSkein as the response to its query. When ASSkein halts with output a bit,
B∗ halts with the same output.

This construction guarantees that

Advprf
Comp∗

(B∗) = Advvol-prf
SSkein (ASSkein) . (5)
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Game RealH,P

Procedure Initialize

Procedure Fn(N,X)
Return HPrim(N,X)

Procedure Prim(α)
Return P (α)

Game SimS

Procedure Initialize

Procedure Fn(N,X)

Return Y
$

← {0, 1}N

Procedure Prim(α)
Return S(α)

Figure 10: Games RealH,P and SimS for the definition of a pseudorandom oracle (PRO).

Further note that B∗ is prefix-free because of the use of the special TyOut type in the final element
of each oracle query. Thus we can apply Lemma 6.1. Notice here that B∗ makes q′ oracle queries
where q′ =

∑q
i=1⌈Ni/b⌉, and that each oracle query consists of at most l · ⌈l′/b⌉+ 3 elements from

X . Let D be the resulting prf-adversary against Comp. We now transform D into a prf-adversary
ATComp against TComp such that

Advprf
TComp(ATComp) = Advprf

Comp(D) . (6)

The theorem follows from Equation (5), Equation (6), and Lemma 6.1. It remains to describe
ATComp.

ATComp runs D. When the latter makes an oracle query W ∈ X , adversary B parses it as W =
(T,X) with |T | = t and |X| = b. It calls its own oracle on T,X and returns the answer to D.

Our tweakable compression function TComp is obtained by running the tweakable block cipher E
in Matyas-Meyer-Oseas [19] mode. As a result, we can prove that if E is a PRP (the standard
assumption on E), then TComp is a PRF (Proposition 6.2). This would not be true for Davies-
Meyer [22, 23] mode. Combining Proposition 6.2 and Theorem 6.4 we get that the PRF-security of
SSkein is implied by the PRP security of E, an advantage of our construction compared to others.

7 Indifferentiability

7.1 Definitions and Tools

The definition of being a pseudorandom oracle [10, 20] extends to the case of VOL primitives. Let
H : D0 × D1 → {0, 1}

∗ be a VOL function with oracle access to an idealized primitive P . A
simulator is a stateful algorithm S. We let

Advpro
H,P,S = Pr

[

RealAH,P ⇒ 1
]

− Pr
[

SimA
S ⇒ 1

]

where the games are defined in Figure 10. It is assumed that A never repeats an oracle query and
never makes a query outside the domain of H.

Pre-image Awareness. We use the notion of pre-image awareness of [12]. let H be a function
with oracle access to an idealized primitive P , and let E be an algorithm called the extractor. Let
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Game PrAH,P,E

Procedure Initialize
T ← ε

Procedure Prim(α)

β
$

← P (α)
T ← T‖(α, β)
Return β

Procedure Ex(Z)
V [Z]← E(Z, T )
Return V [Z]

Procedure Finalize(X)

Z
$

← HPrim(X)

V
$

← Ex(Z)
Return X 6= V

Figure 11: Game PrAH,P,E for the definition of a pre-image awareness (PrA).

A be an adversary. We let

Advpra
H,P,E(A) = Pr

[

PrAA
H,P,E ⇒ true

]

where the game PrA is defined in Figure 11.

We need two results from [12]. The first is that if Comp is PrA then its cascade is PrA for suffix-free
inputs. Let us now formalize this.

We say that a function g : D → X+ is suffix-free if X1 6= X2 implies g(X1) 6≤S g(X2) for all
X1,X2 ∈ D. Note that if g is suffix-free then it is also injective, something we will use below.

Lemma 7.1 (From [12]) Let Comp : {0, 1}b × X → {0, 1}b be a function with oracle access to
an idealized primitive P. Let g : D → X+ be a suffix-free function. Let Comp∗ : {0, 1}b ×X+ →
{0, 1}b be the cascade of Comp. Let K ∈ {0, 1}b and let h : D → {0, 1}b be defined by

h(X) = Comp∗(K, g(X))

for all x ∈ D. Then for any extractor EComp there exists an extractor Eh such that for any adversary
Ah there exits an adversary AComp against Comp such that

Advpra
h,P,Eh

(Ah) ≤ Advpra
Comp,P,EComp

(AComp) .

The second result is that the composition of a PrA function and a RO is indifferentiable from a
random oracle.

Lemma 7.2 (From [12]) Let h : D → {0, 1}b be a function with access to an idealized primitive
P and let R be a VOL RO. Let H : N×D → {0, 1}b be the VOL function defined by

H(N,X) = R(N, h(X))

for all N ∈ N and X ∈ D. Then for any extractor Eh there exists a simulator S such that for any
adversary AH against H that makes q1 queries to its Fn oracle and q2 queries to its Prim oracle
there exists an adversary Ah against h such that

Advpro
H,P,S(AH) ≤ Advpra

h,P,Eh
(Ah) .
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7.2 Pre-image Awareness of TComp

Proposition 7.3 Let P be an ideal tweakable block cipher with key and block length b and tweak
length t. Let

TComp(K,T,X) = E(K,T,X) ⊕X

where E(·, ·, ·) = P (1, (·, ·, ·)). Then there exists an extractor E such that for all A making qp Prim
queries and qe Ex queries,

Advpra
H,P,E(A) ≤

2qeqp + qp(qp + 1)

2b
.

Proof: Extractor E works as follows:

Algorithm E(Z, T )
(C1,K1, T1, Z1,W1), . . . , (Cr,Kr, Tr, Zr,Wr)← T
For i = 1, . . . , r do

If Wi ⊕ Zi = Z then
If ci = 1 then return (Ki, Ti, Zi)
If ci = −1 then return (Ki, Ti,Wi)

Return ⊥

The analysis is the same as in [12].

7.3 Pre-image Awareness for UBI

Lemma 7.4 let TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b be a function with oracle access to
an idealized primitive P . Let f : {0, 1}b ×MsgSp× TypeSp× {0, 1}6 × [0, 2t−32 − 1] → {0, 1}b be
obtained from TComp via the UBI transform. Let K ∈ {0, 1}b and F = fK . Then there is an
extractor EF such that for every extractor ETComp and every adversary AF there is an adversary
ATComp such that

Advpra
F,P,EF

(AF) ≤ Advpra
TComp,P,ETComp

(ATComp) .

Lemma 7.5 let TComp : {0, 1}b × {0, 1}t × {0, 1}b → {0, 1}b be a function with oracle access to
an idealized primitive P . Let f : {0, 1}b × MsgSp × TypeSp × {0, 1}6 × [0, 2t−32 − 1] → {0, 1}b

be obtained from TComp via the UBI transform. Let K ∈ {0, 1}b and F = fK with the restricted
domain D ⊂ MsgSp×TypeSp×{0, 1}6× [0, 2t−32−1] such that for all tuples (M, type, lvl, startl) ∈ D
it is the case that startl is a multiple of b/8, startl = 0 if M = ε, and |M|+ startl · 23 ≤ (2t−32 − 1)23.
Then there is an extractor EF such that for every extractor ETComp and every adversary AF there
is an adversary ATComp such that

Advpra
F,P,EF

(AF) ≤ Advpra
TComp,P,ETComp

(ATComp) .

Proof: Let X = {0, 1}t×{0, 1}b and Comp : {0, 1}b×X → {0, 1}b be defined by Comp(h, (T,X)) =
TComp(h, T,X). Let D = MsgSp× TypeSp× {0, 1}6 × [0, 2t−32 − 1] and define g : D → X+ via
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Algorithm g(M, type, lvl, startl)
(M,T1, . . . , Tm)← Encode(M, type, lvl, startl)
For i = 1, . . . ,m do M∗

i ← (Ti,M [i])
M∗ ← (M∗

1 , . . . ,M∗

m)
Return M∗

Then for all (M, type, lvl, startl) ∈ D we have

F(M, type, lvl, startl) = Comp∗(K, g(M, type, lvl, startl)) .

But Lemma 4.2 says that g is suffix-free. The lemma now follows from Lemma 7.1.

7.4 Indifferentiability for SSkein

Fix throughout this subsection a key K ∈ {0, 1}b to be used as an initial vector. Let

D = OutLens× ((TypeSp− {TyCfg,TyOut})×MsgSp)∗

X = MsgSp× (TypeSp− {TyOut})× {0, 1}7 × [0, 2t−32 − 1]

TwSp2 = {MkTw(1, 1,TyOut, 0, 07, 8)}

TwSp1 = {0, 1}t\TwSp2 .

Define g : D → X+ by

Algorithm g((N, ((type1,M1), . . . , (typer,Mr))))
(type0,M0)← SMkConfig(N)
For i = 0, . . . , r do xi ← (Mi, typei, 0

7, 0)
Return (x0, . . . , xr)

Let Pi : {0, 1}
b×TwSpi×{0, 1}

b → {0, 1}b be ideal tweakable block ciphers and let Ei = Pi(1, (·, ·, ·))
for i = 1, 2. Let TCompi : {0, 1}

b × TwSpi × {0, 1}
b → {0, 1}b be defined by

TCompi(K,T,W ) = Ei(K,T,W ) ⊕W .

Let fi : {0, 1}
b × X → {0, 1}b be obtained by applying the UBI transform to TCompi. Let

f∗i : {0, 1}b ×X+ → {0, 1}b be the cascade of fi. Define h : D → {0, 1}b by

h((N, ((type1,M1), . . . , (typer,Mr)))) = f∗1(K, g((N, ((type1,M1), . . . , (typer,Mr))))) . (7)

Also define Out : OutLens× {0, 1}b → {0, 1}∗ by

Algorithm Out(N, h)
y ← ε ; d← ⌈N/b⌉ ; T1 ← MkTw(1, 1,TyOut, 0, 07, 8)
For i = 1, . . . , d do

Mi ← IntToStr64(i)‖0
b−64

yi ← TComp2(h, T1,Mi)
y ← y‖yi

Return y[1 . . . N]
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Define H : OutLens× ((TypeSp− {TyCfg,TyOut})×MsgSp)∗ → {0, 1}∗ by

H(N, ((type1,M1), . . . , (typer,Mr))) = Out(N, h((N, ((type1,M1), . . . , (typer,Mr))))) . (8)

Now observe that H is exactly Skein with fixed IV K, so our goal is to prove that H is a PRO. The
proof has three steps.

The first step is to show that Out is a VOL PRO assuming P2 is an ideal tweakable block cipher.
This would follow easily if TComp2 was a PRO under this assumption, but this unfortunately is
not true. What saves us here is that the Mi input to TComp2 in Out takes on a few constant values
and is not under adversarial control. For each fixed i the function h → TComp2(h, T1,Mi) is a
PRO and it follows that Out is a VOL PRO. The definition of indifferentiability then implies that
we can replace Out in Equation (8) by a VOL RO. Now, Lemma 7.2 says that H is a PRO as long
as h is PrA.

Finally, Equation (7) and Lemma 7.1 imply that h is PrA as long as f1 is PrA and g is suffix free.
The first is implied by Lemma 7.4 and the second is true by the rules on types.

Both h and Out are based on the same ideal primitive, namely E. However, Out only uses E with
the TyOut type that is never used by h, so the two are independent. This is used crucially above.
Our framework captures it by considering separate ideal tweakable block ciphers P1, P2 on disjoint
tweak spaces that together define the ideal tweakable block cipher on the full tweak space.
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