
Lucre: Anonymous Electronic Tokens v1.3

Ben Laurie
ben@algroup.co.uk

July 23, 2000



1 Introduction

This is a revised version of the theory of blinded coins that may not violate
Chaum’s patent1, based on the original work by David Wagner, and conversa-
tions with Ian Goldberg, David Molnar, Paul Barreto and various Anonymouses.

2 Coins

2.1 Creating the Mint

The mint chooses a prime, p, with (p− 1)/2 also prime, a generator, g, s.t.

g2 6= 1 (mod p) (1)

and

g(p−1)/2 = 1 (mod p) (2)

(see 7.1) and a random number, k,

k ∈ [0, (p− 1)/2) (3)

Let G be the group generated by g.

The mint publishes

(g, p, gk (mod p)) (4)

2.2 Withdrawing a Coin

To withdraw a coin Alice picks a random x, the coin ID, from a sufficiently large
set that two equal values are unlikely to ever be generated2, and calculates,

y = oneway(x) (5)

(see 7.2). y should be in G; check that

y(p−1)/2 = 1 (mod p) (6)

however, note that the current form of the oneway function ensures that y is in
G, so this check is redundant.

1At least, that’s what people think. Take legal advice before using this stuff!
2Remember that if the size of the set of all possible coins is C, the probability of two being

the same is .5 after around
√
C coins have been generated.

1



Alice chooses a random blinding factor b ∈ [0, (p−1)/2) and sends ygb (the coin
request) to the mint3. The mint debits Alice’s account and returns the blinded
signature,

m = (ygb)k (mod p) (7)

Alice unblinds m, calculating the signature,

z = m(gk)−b = (ygb)kg−kb = ykgbkg−kb = yk (mod p) (8)

The coin is then

c = (x, z) (9)

2.3 Spending a Coin

To spend a coin, Alice simply gives the coin, c, to Bob. Bob then sends it to
the mint to be checked. The mint first ensures that x has not already been
spent, and that oneway(x) is in G, then checks that z is a signature for x (i.e.
z = oneway(x)k (mod p)). The mint then records x as spent and credits Bob’s
account.

3 Attack

Unfortunately an attack on the anonymity of this protocol is possible. The mint
can mark a coin in a way that only it can detect, by signing it with k′ instead
of k. Then the unblinded “signature” is

z = (ygb)k
′
g−bk = yk

′
gb(k

′−k) (mod p) (10)

When Bob submits c to the mint, then the mint calculates

y(zy−k
′
)1/(k′−k) = y(gb(k

′−k))1/(k′−k) = ygb (mod p) (11)

The mint can then simply look up who sent ygb to it and thus learn Alice’s
identity.

4 Type I Defence

One defence against this attack is to make the mint prove that it has signed
with k and not some other number. Since the mint must not reveal k, this proof
must be a zero-knowledge proof. Two possible zero-knowledge proofs are known
to me.

3Paulo Barreto points out that the efficiency of the scheme can be improved by calculating
gb.preoneway(x) = ygb, thus saving an exponentiation.

2



4.1 Variation 1

This variation was suggested by Ian Goldberg.

Given a coin request, ygb, the mint chooses a random number r s.t.

r ∈ [logg(p) + 1, (p− 1)/2− logg(p)− 1] (12)

and calculates

t = k/r (mod (p− 1)/2) (13)

((p−1)/2 rather than p because we are working in G, which has order (p−1)/2).
The mint then sends Alice

Q = (ygb)r (mod p) (14)

and

A = gr (mod p) (15)

Alice then randomly demands one of r or t.

If Alice chose r, she verifies that

Q = (ygb)r (mod p) (16)

and

A = gr (mod p) (17)

If Alice chose t, she verifies that

At = grt = gk (mod p) (18)

and

Qt = (ygb)rt = (ygb)k = z (mod p) (19)

Note that a mint that wants to cheat has a .5 chance of getting away with it each
time (by guessing whether the challenger will choose r or t and lying about Q
and A appropriately). Naturally, it is increasingly unlikely to get away with this
with each repetition. A suspicious challenger could always repeat the protocol
until the probability of cheating is low enough to make them happy.

3



4.2 Variation 2

This variation is due to Chaum and Pedersen (Crypto ’92) (I’m told).

The mint chooses a random value r and sends Alice

u = gr (mod p) (20)

and

v = (ygb)r (mod p) (21)

Alice responds with a challenge d. The mint answers with

w = dk + r (mod (p− 1)/2) (22)

Alice verifies that

gw = gdk+r = (gk)du (mod p) (23)

and

(ygb)w = (ygb)dk+r = ((ygb)k)dv = (ygb)dv (mod p) (24)

4.3 Non-interactive variant

It is suggested that choosing

d = hash(u, v) (25)

would allow the second variation to be used non-interactively. The mint sends
(d,w) along with the coin, Alice calculates

gw(gk)−d = u (mod p) (26)

and

(ygb)wS−d = v (mod p) (27)

and verifies that d = hash(u, v).

I’m not entirely convinced that it isn’t possible to search for (or even calculate)
a set of values that makes this appear to work whilst still signing with k′.

4



5 Type II Defence

Another defence is to combine two blinding methods, using two indepenent ran-
dom blinding factors. With this method, the coin-withdrawal protocol changes
as follows.

To withdraw a coin Alice picks a random x, the coin ID, from a sufficiently large
set that two equal values are unlikely to ever be generated, and calculates,

y = oneway(x) (28)

(see 7.2). y should be in G; check that

y(p−1)/2 = 1 (mod p) (29)

Alice chooses random blinding factors by, bg ∈ [0, (p− 1)/2), ensuring that by is
invertible mod(p − 1)/2 and sends ybygbg (the coin request) to the mint. The
mint debits Alice’s account and returns the blinded signature,

m = (ybygbg )k (mod p) (30)

Alice unblinds m, calculating the signature,

z = (m.(gk)−bg )1/by (31)
= ((ybygbg )kg−kbg )1/by (32)
= (ykbygkbgg−kbg )1/by (33)
= (ykby )1/by (34)
= yk (mod p) (35)

Now z is in the same form as in the original scheme and we can proceed as
normal.

5.1 Failed Attack

If the mint attempts to mark the coin, as before, then let’s see what happens.
The blinded signature is

m = (ybygbg )k
′
(mod p) (36)

unblinding, Alice gets

z = (m.(gk)−bg )1/by (37)

= ((ybygbg )k
′
g−kbg )1/by (38)

= (yk
′bygk

′bgg−kbg )1/by (39)

= (yk
′byg(k′−k)bg )1/by (40)

= yk
′
g(k′−k)bg/by (mod p) (41)

5



Because this result entangles both the unknown (to the mint) value y and the,
also unknown, value gbg/by , the mint cannot even verify that this is a correct
signature, let alone figure out who gave it the blinded coin in the first place.

6 Cost and Value

Although there are those that hold that a coin should have a value similar to
its cost of production, this is clearly insane, at least when the coin is to be used
as money4.

In general, the cost of production should be considerably less than the value of
the coin. So, it is worth calculating the cost of producing Lucre coins.

Assuming that the coins are relatively low value, then a 512 bit signing key
should be sufficient. The cost of producing a coin is really the cost of signing
it twice (once blinded when withdrawn, and once ublinded when deposited).
Implemented in Java on a 300 MHz Pentium5 we can achieve 25 signs per
second. A server in the Bunker (http://www.thebunker.net/) costs £250 per
month.

That’s £8 per day. 30p per hour, .5p per minute, .001p per second, .0004p per
sign.

So, values of .01p per coin are easily achievable.

Incidentally, signing with a 1024-bit key takes around 6 times as long, so values
of .1p with 1024-bit security are also achievable.

7 Theory

7.1 Subgroup Order

(2) ensures that the order of the subgroup generated by g is (p− 1)/2.

7.1.1 Leakage

This avoids leakage of information about k which can occur if g generates the
whole of Z∗p , because

(gk)(p−1)/2

{
= 1 if k is even
6= 1 if k is odd (42)

Proof

If k is even, then there exists an n s.t. k = 2n.

(g2n)(p−1)/2 = (gn)p−1 (43)
4A clear example where it is not insane is Adam Back’s hashcash used as an anti-spam

measure - in that case, the whole point is that the coin is expensive to produce.
5Surely nothing can be slower that this?

6



Since

gcd(gn, p) = 1 (44)

then, by Euler’s theorem,

(gn)p−1 = 1 (mod p) (45)

If k is odd, then there exists an n s.t. k = 2n+ 1.

(g2n+1)(p−1)/2 = (gn)p−1g(p−1)/2 (46)

(gn)p−1 = 1 (mod p) (47)

(see (45)) and

g(p−1)/2 6= 1 (mod p) (48)

because the order of g is p− 1, so no y < p− 1 can give gy = 1 (mod p). So

(gn)p−1g(p−1)/2 = 1 · x (mod p), x 6= 1 (49)

7.1.2 Invertability

The ZK proofs require exponents to be invertible, and in any case this may be
a useful property. This would not be possible in an exponent group of order
p − 1 because x−1 (mod p − 1) does not exist if gcd(x, p − 1) 6= 1, which would
be the case for all even x.

7.1.3 Subgroup Order Revisited

It has been pointed out that using a g that generates the whole group Z∗p and
choosing k odd also fixes both the above problems, and makes some parts of
the protocol cheaper (because you can avoid the exponentiation in the one-way
function). This seems to me to be somehow less satisfying, but I can’t see
anything actively wrong with it.

7.2 One-way Coin Function

The purpose of the one way function is to prevent Alice from cheating the mint
by producing variants on a signed coin by simpy reblinding the coin and the
signature - the fact that the coin has a special structure prevents this from
working.

The one-way coin function can, in principle, be any one way function, but the
one chosen for Lucre is defined as follows: Let the random seed for the coin be
in [0, 2n) where

7



n = m+ ((log2(p)−m) mod 160) (50)

m is the minimim number of bits in x, chosen to be large enough to avoid
collisions (128 in Lucre’s case). Then define

h0(x) = x, hk(x) = hk−1(x)|SHA1(hk−1(x)) (51)

where | denotes concatenation. Then

preoneway(x) = h(n−m)/160(x) (52)

In case it isn’t obvious, this ensures that

log2(preoneway(x)) ≈ log2(p) (53)

We then ensure that oneway(x) is in G

oneway(x) = gpreoneway(x) (mod p) (54)

8


