Entries Tagged "artificial intelligence"

Page 4 of 10

AI and Microdirectives

Imagine a future in which AIs automatically interpret—and enforce—laws.

All day and every day, you constantly receive highly personalized instructions for how to comply with the law, sent directly by your government and law enforcement. You’re told how to cross the street, how fast to drive on the way to work, and what you’re allowed to say or do online—if you’re in any situation that might have legal implications, you’re told exactly what to do, in real time.

Imagine that the computer system formulating these personal legal directives at mass scale is so complex that no one can explain how it reasons or works. But if you ignore a directive, the system will know, and it’ll be used as evidence in the prosecution that’s sure to follow.

This future may not be far off—automatic detection of lawbreaking is nothing new. Speed cameras and traffic-light cameras have been around for years. These systems automatically issue citations to the car’s owner based on the license plate. In such cases, the defendant is presumed guilty unless they prove otherwise, by naming and notifying the driver.

In New York, AI systems equipped with facial recognition technology are being used by businesses to identify shoplifters. Similar AI-powered systems are being used by retailers in Australia and the United Kingdom to identify shoplifters and provide real-time tailored alerts to employees or security personnel. China is experimenting with even more powerful forms of automated legal enforcement and targeted surveillance.

Breathalyzers are another example of automatic detection. They estimate blood alcohol content by calculating the number of alcohol molecules in the breath via an electrochemical reaction or infrared analysis (they’re basically computers with fuel cells or spectrometers attached). And they’re not without controversy: Courts across the country have found serious flaws and technical deficiencies with Breathalyzer devices and the software that powers them. Despite this, criminal defendants struggle to obtain access to devices or their software source code, with Breathalyzer companies and courts often refusing to grant such access. In the few cases where courts have actually ordered such disclosures, that has usually followed costly legal battles spanning many years.

AI is about to make this issue much more complicated, and could drastically expand the types of laws that can be enforced in this manner. Some legal scholars predict that computationally personalized law and its automated enforcement are the future of law. These would be administered by what Anthony Casey and Anthony Niblett call “microdirectives,” which provide individualized instructions for legal compliance in a particular scenario.

Made possible by advances in surveillance, communications technologies, and big-data analytics, microdirectives will be a new and predominant form of law shaped largely by machines. They are “micro” because they are not impersonal general rules or standards, but tailored to one specific circumstance. And they are “directives” because they prescribe action or inaction required by law.

A Digital Millennium Copyright Act takedown notice is a present-day example of a microdirective. The DMCA’s enforcement is almost fully automated, with copyright “bots” constantly scanning the internet for copyright-infringing material, and automatically sending literally hundreds of millions of DMCA takedown notices daily to platforms and users. A DMCA takedown notice is tailored to the recipient’s specific legal circumstances. It also directs action—remove the targeted content or prove that it’s not infringing—based on the law.

It’s easy to see how the AI systems being deployed by retailers to identify shoplifters could be redesigned to employ microdirectives. In addition to alerting business owners, the systems could also send alerts to the identified persons themselves, with tailored legal directions or notices.

A future where AIs interpret, apply, and enforce most laws at societal scale like this will exponentially magnify problems around fairness, transparency, and freedom. Forget about software transparency—well-resourced AI firms, like Breathalyzer companies today, would no doubt ferociously guard their systems for competitive reasons. These systems would likely be so complex that even their designers would not be able to explain how the AIs interpret and apply the law—something we’re already seeing with today’s deep learning neural network systems, which are unable to explain their reasoning.

Even the law itself could become hopelessly vast and opaque. Legal microdirectives sent en masse for countless scenarios, each representing authoritative legal findings formulated by opaque computational processes, could create an expansive and increasingly complex body of law that would grow ad infinitum.

And this brings us to the heart of the issue: If you’re accused by a computer, are you entitled to review that computer’s inner workings and potentially challenge its accuracy in court? What does cross-examination look like when the prosecutor’s witness is a computer? How could you possibly access, analyze, and understand all microdirectives relevant to your case in order to challenge the AI’s legal interpretation? How could courts hope to ensure equal application of the law? Like the man from the country in Franz Kafka’s parable in The Trial, you’d die waiting for access to the law, because the law is limitless and incomprehensible.

This system would present an unprecedented threat to freedom. Ubiquitous AI-powered surveillance in society will be necessary to enable such automated enforcement. On top of that, research—including empirical studies conducted by one of us (Penney)—has shown that personalized legal threats or commands that originate from sources of authority—state or corporate—can have powerful chilling effects on people’s willingness to speak or act freely. Imagine receiving very specific legal instructions from law enforcement about what to say or do in a situation: Would you feel you had a choice to act freely?

This is a vision of AI’s invasive and Byzantine law of the future that chills to the bone. It would be unlike any other law system we’ve seen before in human history, and far more dangerous for our freedoms. Indeed, some legal scholars argue that this future would effectively be the death of law.

Yet it is not a future we must endure. Proposed bans on surveillance technology like facial recognition systems can be expanded to cover those enabling invasive automated legal enforcement. Laws can mandate interpretability and explainability for AI systems to ensure everyone can understand and explain how the systems operate. If a system is too complex, maybe it shouldn’t be deployed in legal contexts. Enforcement by personalized legal processes needs to be highly regulated to ensure oversight, and should be employed only where chilling effects are less likely, like in benign government administration or regulatory contexts where fundamental rights and freedoms are not at risk.

AI will inevitably change the course of law. It already has. But we don’t have to accept its most extreme and maximal instantiations, either today or tomorrow.

This essay was written with Jon Penney, and previously appeared on Slate.com.

Posted on July 21, 2023 at 7:16 AMView Comments

Disabling Self-Driving Cars with a Traffic Cone

You can disable a self-driving car by putting a traffic cone on its hood:

The group got the idea for the conings by chance. The person claims a few of them walking together one night saw a cone on the hood of an AV, which appeared disabled. They weren’t sure at the time which came first; perhaps someone had placed the cone on the AV’s hood to signify it was disabled rather than the other way around. But, it gave them an idea, and when they tested it, they found that a cone on a hood renders the vehicles little more than a multi-ton hunk of useless metal. The group suspects the cone partially blocks the LIDAR detectors on the roof of the car, in much the same way that a human driver wouldn’t be able to safely drive with a cone on the hood. But there is no human inside to get out and simply remove the cone, so the car is stuck.

Delightfully low-tech.

Posted on July 18, 2023 at 7:13 AMView Comments

Google Is Using Its Vast Data Stores to Train AI

No surprise, but Google just changed its privacy policy to reflect broader uses of all the surveillance data it has captured over the years:

Research and development: Google uses information to improve our services and to develop new products, features and technologies that benefit our users and the public. For example, we use publicly available information to help train Google’s AI models and build products and features like Google Translate, Bard, and Cloud AI capabilities.

(I quote the privacy policy as of today. The Mastodon link quotes the privacy policy from ten days ago. So things are changing fast.)

Posted on July 12, 2023 at 10:50 AMView Comments

The AI Dividend

For four decades, Alaskans have opened their mailboxes to find checks waiting for them, their cut of the black gold beneath their feet. This is Alaska’s Permanent Fund, funded by the state’s oil revenues and paid to every Alaskan each year. We’re now in a different sort of resource rush, with companies peddling bits instead of oil: generative AI.

Everyone is talking about these new AI technologies—like ChatGPT—and AI companies are touting their awesome power. But they aren’t talking about how that power comes from all of us. Without all of our writings and photos that AI companies are using to train their models, they would have nothing to sell. Big Tech companies are currently taking the work of the American people, without our knowledge and consent, without licensing it, and are pocketing the proceeds.

You are owed profits for your data that powers today’s AI, and we have a way to make that happen. We call it the AI Dividend.

Our proposal is simple, and harkens back to the Alaskan plan. When Big Tech companies produce output from generative AI that was trained on public data, they would pay a tiny licensing fee, by the word or pixel or relevant unit of data. Those fees would go into the AI Dividend fund. Every few months, the Commerce Department would send out the entirety of the fund, split equally, to every resident nationwide. That’s it.

There’s no reason to complicate it further. Generative AI needs a wide variety of data, which means all of us are valuable—not just those of us who write professionally, or prolifically, or well. Figuring out who contributed to which words the AIs output would be both challenging and invasive, given that even the companies themselves don’t quite know how their models work. Paying the dividend to people in proportion to the words or images they create would just incentivize them to create endless drivel, or worse, use AI to create that drivel. The bottom line for Big Tech is that if their AI model was created using public data, they have to pay into the fund. If you’re an American, you get paid from the fund.

Under this plan, hobbyists and American small businesses would be exempt from fees. Only Big Tech companies—those with substantial revenue—would be required to pay into the fund. And they would pay at the point of generative AI output, such as from ChatGPT, Bing, Bard, or their embedded use in third-party services via Application Programming Interfaces.

Our proposal also includes a compulsory licensing plan. By agreeing to pay into this fund, AI companies will receive a license that allows them to use public data when training their AI. This won’t supersede normal copyright law, of course. If a model starts producing copyright material beyond fair use, that’s a separate issue.

Using today’s numbers, here’s what it would look like. The licensing fee could be small, starting at $0.001 per word generated by AI. A similar type of fee would be applied to other categories of generative AI outputs, such as images. That’s not a lot, but it adds up. Since most of Big Tech has started integrating generative AI into products, these fees would mean an annual dividend payment of a couple hundred dollars per person.

The idea of paying you for your data isn’t new, and some companies have tried to do it themselves for users who opted in. And the idea of the public being repaid for use of their resources goes back to well before Alaska’s oil fund. But generative AI is different: It uses data from all of us whether we like it or not, it’s ubiquitous, and it’s potentially immensely valuable. It would cost Big Tech companies a fortune to create a synthetic equivalent to our data from scratch, and synthetic data would almost certainly result in worse output. They can’t create good AI without us.

Our plan would apply to generative AI used in the US. It also only issues a dividend to Americans. Other countries can create their own versions, applying a similar fee to AI used within their borders. Just like an American company collects VAT for services sold in Europe, but not here, each country can independently manage their AI policy.

Don’t get us wrong; this isn’t an attempt to strangle this nascent technology. Generative AI has interesting, valuable, and possibly transformative uses, and this policy is aligned with that future. Even with the fees of the AI Dividend, generative AI will be cheap and will only get cheaper as technology improves. There are also risks—both every day and esoteric—posed by AI, and the government may need to develop policies to remedy any harms that arise.

Our plan can’t make sure there are no downsides to the development of AI, but it would ensure that all Americans will share in the upsides—particularly since this new technology isn’t possible without our contribution.

This essay was written with Barath Raghavan, and previously appeared on Politico.com.

Posted on July 7, 2023 at 7:11 AMView Comments

Class-Action Lawsuit for Scraping Data without Permission

I have mixed feelings about this class-action lawsuit against OpenAI and Microsoft, claiming that it “scraped 300 billion words from the internet” without either registering as a data broker or obtaining consent. On the one hand, I want this to be a protected fair use of public data. On the other hand, I want us all to be compensated for our uniquely human ability to generate language.

There’s an interesting wrinkle on this. A recent paper showed that using AI generated text to train another AI invariably “causes irreversible defects.” From a summary:

The tails of the original content distribution disappear. Within a few generations, text becomes garbage, as Gaussian distributions converge and may even become delta functions. We call this effect model collapse.

Just as we’ve strewn the oceans with plastic trash and filled the atmosphere with carbon dioxide, so we’re about to fill the Internet with blah. This will make it harder to train newer models by scraping the web, giving an advantage to firms which already did that, or which control access to human interfaces at scale. Indeed, we already see AI startups hammering the Internet Archive for training data.

This is the same idea that Ted Chiang wrote about: that ChatGPT is a “blurry JPEG of all the text on the Web.” But the paper includes the math that proves the claim.

What this means is that text from before last year—text that is known human-generated—will become increasingly valuable.

Posted on July 5, 2023 at 7:14 AMView Comments

AI as Sensemaking for Public Comments

It’s become fashionable to think of artificial intelligence as an inherently dehumanizing technology, a ruthless force of automation that has unleashed legions of virtual skilled laborers in faceless form. But what if AI turns out to be the one tool able to identify what makes your ideas special, recognizing your unique perspective and potential on the issues where it matters most?

You’d be forgiven if you’re distraught about society’s ability to grapple with this new technology. So far, there’s no lack of prognostications about the democratic doom that AI may wreak on the US system of government. There are legitimate reasons to be concerned that AI could spread misinformation, break public comment processes on regulations, inundate legislators with artificial constituent outreach, help to automate corporate lobbying, or even generate laws in a way tailored to benefit narrow interests.

But there are reasons to feel more sanguine as well. Many groups have started demonstrating the potential beneficial uses of AI for governance. A key constructive-use case for AI in democratic processes is to serve as discussion moderator and consensus builder.

To help democracy scale better in the face of growing, increasingly interconnected populations—as well as the wide availability of AI language tools that can generate reams of text at the click of a button—the US will need to leverage AI’s capability to rapidly digest, interpret and summarize this content.

There are two different ways to approach the use of generative AI to improve civic participation and governance. Each is likely to lead to drastically different experience for public policy advocates and other people trying to have their voice heard in a future system where AI chatbots are both the dominant readers and writers of public comment.

For example, consider individual letters to a representative, or comments as part of a regulatory rulemaking process. In both cases, we the people are telling the government what we think and want.

For more than half a century, agencies have been using human power to read through all the comments received, and to generate summaries and responses of their major themes. To be sure, digital technology has helped.

In 2021, the Council of Federal Chief Data Officers recommended modernizing the comment review process by implementing natural language processing tools for removing duplicates and clustering similar comments in processes governmentwide. These tools are simplistic by the standards of 2023 AI. They work by assessing the semantic similarity of comments based on metrics like word frequency (How often did you say “personhood”?) and clustering similar comments and giving reviewers a sense of what topic they relate to.

Think of this approach as collapsing public opinion. They take a big, hairy mass of comments from thousands of people and condense them into a tidy set of essential reading that generally suffices to represent the broad themes of community feedback. This is far easier for a small agency staff or legislative office to handle than it would be for staffers to actually read through that many individual perspectives.

But what’s lost in this collapsing is individuality, personality, and relationships. The reviewer of the condensed comments may miss the personal circumstances that led so many commenters to write in with a common point of view, and may overlook the arguments and anecdotes that might be the most persuasive content of the testimony.

Most importantly, the reviewers may miss out on the opportunity to recognize committed and knowledgeable advocates, whether interest groups or individuals, who could have long-term, productive relationships with the agency.

These drawbacks have real ramifications for the potential efficacy of those thousands of individual messages, undermining what all those people were doing it for. Still, practicality tips the balance toward of some kind of summarization approach. A passionate letter of advocacy doesn’t hold any value if regulators or legislators simply don’t have time to read it.

There is another approach. In addition to collapsing testimony through summarization, government staff can use modern AI techniques to explode it. They can automatically recover and recognize a distinctive argument from one piece of testimony that does not exist in the thousands of other testimonies received. They can discover the kinds of constituent stories and experiences that legislators love to repeat at hearings, town halls and campaign events. This approach can sustain the potential impact of individual public comment to shape legislation even as the volumes of testimony may rise exponentially.

In computing, there is a rich history of that type of automation task in what is called outlier detection. Traditional methods generally involve finding a simple model that explains most of the data in question, like a set of topics that well describe the vast majority of submitted comments. But then they go a step further by isolating those data points that fall outside the mold—comments that don’t use arguments that fit into the neat little clusters.

State-of-the-art AI language models aren’t necessary for identifying outliers in text document data sets, but using them could bring a greater degree of sophistication and flexibility to this procedure. AI language models can be tasked to identify novel perspectives within a large body of text through prompting alone. You simply need to tell the AI to find them.

In the absence of that ability to extract distinctive comments, lawmakers and regulators have no choice but to prioritize on other factors. If there is nothing better, “who donated the most to our campaign” or “which company employs the most of my former staffers” become reasonable metrics for prioritizing public comments. AI can help elected representatives do much better.

If Americans want AI to help revitalize the country’s ailing democracy, they need to think about how to align the incentives of elected leaders with those of individuals. Right now, as much as 90% of constituent communications are mass emails organized by advocacy groups, and they go largely ignored by staffers. People are channeling their passions into a vast digital warehouses where algorithms box up their expressions so they don’t have to be read. As a result, the incentive for citizens and advocacy groups is to fill that box up to the brim, so someone will notice it’s overflowing.

A talented, knowledgeable, engaged citizen should be able to articulate their ideas and share their personal experiences and distinctive points of view in a way that they can be both included with everyone else’s comments where they contribute to summarization and recognized individually among the other comments. An effective comment summarization process would extricate those unique points of view from the pile and put them into lawmakers’ hands.

This essay was written with Nathan Sanders, and previously appeared in the Conversation.

Posted on June 22, 2023 at 11:43 AMView Comments

On the Need for an AI Public Option

Artificial intelligence will bring great benefits to all of humanity. But do we really want to entrust this revolutionary technology solely to a small group of US tech companies?

Silicon Valley has produced no small number of moral disappointments. Google retired its “don’t be evil” pledge before firing its star ethicist. Self-proclaimed “free speech absolutist” Elon Musk bought Twitter in order to censor political speech, retaliate against journalists, and ease access to the platform for Russian and Chinese propagandists. Facebook lied about how it enabled Russian interference in the 2016 US presidential election and paid a public relations firm to blame Google and George Soros instead.

These and countless other ethical lapses should prompt us to consider whether we want to give technology companies further abilities to learn our personal details and influence our day-to-day decisions. Tech companies can already access our daily whereabouts and search queries. Digital devices monitor more and more aspects of our lives: We have cameras in our homes and heartbeat sensors on our wrists sending what they detect to Silicon Valley.

Now, tech giants are developing ever more powerful AI systems that don’t merely monitor you; they actually interact with you—and with others on your behalf. If searching on Google in the 2010s was like being watched on a security camera, then using AI in the late 2020s will be like having a butler. You will willingly include them in every conversation you have, everything you write, every item you shop for, every want, every fear, everything. It will never forget. And, despite your reliance on it, it will be surreptitiously working to further the interests of one of these for-profit corporations.

There’s a reason Google, Microsoft, Facebook, and other large tech companies are leading the AI revolution: Building a competitive large language model (LLM) like the one powering ChatGPT is incredibly expensive. It requires upward of $100 million in computational costs for a single model training run, in addition to access to large amounts of data. It also requires technical expertise, which, while increasingly open and available, remains heavily concentrated in a small handful of companies. Efforts to disrupt the AI oligopoly by funding start-ups are self-defeating as Big Tech profits from the cloud computing services and AI models powering those start-ups—and often ends up acquiring the start-ups themselves.

Yet corporations aren’t the only entities large enough to absorb the cost of large-scale model training. Governments can do it, too. It’s time to start taking AI development out of the exclusive hands of private companies and bringing it into the public sector. The United States needs a government-funded-and-directed AI program to develop widely reusable models in the public interest, guided by technical expertise housed in federal agencies.

So far, the AI regulation debate in Washington has focused on the governance of private-sector activity—which the US Congress is in no hurry to advance. Congress should not only hurry up and push AI regulation forward but also go one step further and develop its own programs for AI. Legislators should reframe the AI debate from one about public regulation to one about public development.

The AI development program could be responsive to public input and subject to political oversight. It could be directed to respond to critical issues such as privacy protection, underpaid tech workers, AI’s horrendous carbon emissions, and the exploitation of unlicensed data. Compared to keeping AI in the hands of morally dubious tech companies, the public alternative is better both ethically and economically. And the switch should take place soon: By the time AI becomes critical infrastructure, essential to large swaths of economic activity and daily life, it will be too late to get started.

Other countries are already there. China has heavily prioritized public investment in AI research and development by betting on a handpicked set of giant companies that are ostensibly private but widely understood to be an extension of the state. The government has tasked Alibaba, Huawei, and others with creating products that support the larger ecosystem of state surveillance and authoritarianism.

The European Union is also aggressively pushing AI development. The European Commission already invests 1 billion euros per year in AI, with a plan to increase that figure to 20 billion euros annually by 2030. The money goes to a continent-wide network of public research labs, universities, and private companies jointly working on various parts of AI. The Europeans’ focus is on knowledge transfer, developing the technology sector, use of AI in public administration, mitigating safety risks, and preserving fundamental rights. The EU also continues to be at the cutting edge of aggressively regulating both data and AI.

Neither the Chinese nor the European model is necessarily right for the United States. State control of private enterprise remains anathema in American political culture and would struggle to gain mainstream traction. The tech companies—and their supporters in both US political parties—are opposed to robust public governance of AI. But Washington can take inspiration from China and Europe’;s long-range planning and leadership on regulation and public investment. With boosters pointing to hundreds of trillions of dollars of global economic value associated with AI, the stakes of international competition are compelling. As in energy and medical research, which have their own federal agencies in the Department of Energy and the National Institutes of Health, respectively, there is a place for AI research and development inside government.

Beside the moral argument against letting private companies develop AI, there’s a strong economic argument in favor of a public option as well. A publicly funded LLM could serve as an open platform for innovation, helping any small business, nonprofit, or individual entrepreneur to build AI-assisted applications.

There’s also a practical argument. Building AI is within public reach because governments don’t need to own and operate the entire AI supply chain. Chip and computer production, cloud data centers, and various value-added applications—such as those that integrate AI with consumer electronics devices or entertainment software—do not need to be publicly controlled or funded.

One reason to be skeptical of public funding for AI is that it might result in a lower quality and slower innovation, given greater ethical scrutiny, political constraints, and fewer incentives due to a lack of market competition. But even if that is the case, it would be worth broader access to the most important technology of the 21st century. And it is by no means certain that public AI has to be at a disadvantage. The open-source community is proof that it’s not always private companies that are the most innovative.

Those who worry about the quality trade-off might suggest a public buyer model, whereby Washington licenses or buys private language models from Big Tech instead of developing them itself. But that doesn’t go far enough to ensure that the tools are aligned with public priorities and responsive to public needs. It would not give the public detailed insight into or control of the inner workings and training procedures for these models, and it would still require strict and complex regulation.

There is political will to take action to develop AI via public, rather than private, funds—but this does not yet equate to the will to create a fully public AI development agency. A task force created by Congress recommended in January a $2.6 billion federal investment in computing and data resources to prime the AI research ecosystem in the United States. But this investment would largely serve to advance the interests of Big Tech, leaving the opportunity for public ownership and oversight unaddressed.

Nonprofit and academic organizations have already created open-access LLMs. While these should be celebrated, they are not a substitute for a public option. Nonprofit projects are still beholden to private interests, even if they are benevolent ones. These private interests can change without public input, as when OpenAI effectively abandoned its nonprofit origins, and we can’t be sure that their founding intentions or operations will survive market pressures, fickle donors, and changes in leadership.

The US government is by no means a perfect beacon of transparency, a secure and responsible store of our data, or a genuine reflection of the public’s interests. But the risks of placing AI development entirely in the hands of demonstrably untrustworthy Silicon Valley companies are too high. AI will impact the public like few other technologies, so it should also be developed by the public.

This essay was written with Nathan Sanders, and appeared in Foreign Policy.

Posted on June 14, 2023 at 7:02 AMView Comments

AI-Generated Steganography

New research suggests that AIs can produce perfectly secure steganographic images:

Abstract: Steganography is the practice of encoding secret information into innocuous content in such a manner that an adversarial third party would not realize that there is hidden meaning. While this problem has classically been studied in security literature, recent advances in generative models have led to a shared interest among security and machine learning researchers in developing scalable steganography techniques. In this work, we show that a steganography procedure is perfectly secure under Cachin (1998)’s information theoretic-model of steganography if and only if it is induced by a coupling. Furthermore, we show that, among perfectly secure procedures, a procedure is maximally efficient if and only if it is induced by a minimum entropy coupling. These insights yield what are, to the best of our knowledge, the first steganography algorithms to achieve perfect security guarantees with non-trivial efficiency; additionally, these algorithms are highly scalable. To provide empirical validation, we compare a minimum entropy coupling-based approach to three modern baselines—arithmetic coding, Meteor, and adaptive dynamic grouping—using GPT-2, WaveRNN, and Image Transformer as communication channels. We find that the minimum entropy coupling-based approach achieves superior encoding efficiency, despite its stronger security constraints. In aggregate, these results suggest that it may be natural to view information-theoretic steganography through the lens of minimum entropy coupling.

News article.

EDITED TO ADD (6/13): Comments.

Posted on June 12, 2023 at 7:18 AMView Comments

Open-Source LLMs

In February, Meta released its large language model: LLaMA. Unlike OpenAI and its ChatGPT, Meta didn’t just give the world a chat window to play with. Instead, it released the code into the open-source community, and shortly thereafter the model itself was leaked. Researchers and programmers immediately started modifying it, improving it, and getting it to do things no one else anticipated. And their results have been immediate, innovative, and an indication of how the future of this technology is going to play out. Training speeds have hugely increased, and the size of the models themselves has shrunk to the point that you can create and run them on a laptop. The world of AI research has dramatically changed.

This development hasn’t made the same splash as other corporate announcements, but its effects will be much greater. It will wrest power from the large tech corporations, resulting in both much more innovation and a much more challenging regulatory landscape. The large corporations that had controlled these models warn that this free-for-all will lead to potentially dangerous developments, and problematic uses of the open technology have already been documented. But those who are working on the open models counter that a more democratic research environment is better than having this powerful technology controlled by a small number of corporations.

The power shift comes from simplification. The LLMs built by OpenAI and Google rely on massive data sets, measured in the tens of billions of bytes, computed on by tens of thousands of powerful specialized processors producing models with billions of parameters. The received wisdom is that bigger data, bigger processing, and larger parameter sets were all needed to make a better model. Producing such a model requires the resources of a corporation with the money and computing power of a Google or Microsoft or Meta.

But building on public models like Meta’s LLaMa, the open-source community has innovated in ways that allow results nearly as good as the huge models—but run on home machines with common data sets. What was once the reserve of the resource-rich has become a playground for anyone with curiosity, coding skills, and a good laptop. Bigger may be better, but the open-source community is showing that smaller is often good enough. This opens the door to more efficient, accessible, and resource-friendly LLMs.

More importantly, these smaller and faster LLMs are much more accessible and easier to experiment with. Rather than needing tens of thousands of machines and millions of dollars to train a new model, an existing model can now be customized on a mid-priced laptop in a few hours. This fosters rapid innovation.

It also takes control away from large companies like Google and OpenAI. By providing access to the underlying code and encouraging collaboration, open-source initiatives empower a diverse range of developers, researchers, and organizations to shape the technology. This diversification of control helps prevent undue influence, and ensures that the development and deployment of AI technologies align with a broader set of values and priorities. Much of the modern internet was built on open-source technologies from the LAMP (Linux, Apache, mySQL, and PHP/PERL/Python) stack—a suite of applications often used in web development. This enabled sophisticated websites to be easily constructed, all with open-source tools that were built by enthusiasts, not companies looking for profit. Facebook itself was originally built using open-source PHP.

But being open-source also means that there is no one to hold responsible for misuse of the technology. When vulnerabilities are discovered in obscure bits of open-source technology critical to the functioning of the internet, often there is no entity responsible for fixing the bug. Open-source communities span countries and cultures, making it difficult to ensure that any country’s laws will be respected by the community. And having the technology open-sourced means that those who wish to use it for unintended, illegal, or nefarious purposes have the same access to the technology as anyone else.

This, in turn, has significant implications for those who are looking to regulate this new and powerful technology. Now that the open-source community is remixing LLMs, it’s no longer possible to regulate the technology by dictating what research and development can be done; there are simply too many researchers doing too many different things in too many different countries. The only governance mechanism available to governments now is to regulate usage (and only for those who pay attention to the law), or to offer incentives to those (including startups, individuals, and small companies) who are now the drivers of innovation in the arena. Incentives for these communities could take the form of rewards for the production of particular uses of the technology, or hackathons to develop particularly useful applications. Sticks are hard to use—instead, we need appealing carrots.

It is important to remember that the open-source community is not always motivated by profit. The members of this community are often driven by curiosity, the desire to experiment, or the simple joys of building. While there are companies that profit from supporting software produced by open-source projects like Linux, Python, or the Apache web server, those communities are not profit driven.

And there are many open-source models to choose from. Alpaca, Cerebras-GPT, Dolly, HuggingChat, and StableLM have all been released in the past few months. Most of them are built on top of LLaMA, but some have other pedigrees. More are on their way.

The large tech monopolies that have been developing and fielding LLMs—Google, Microsoft, and Meta—are not ready for this. A few weeks ago, a Google employee leaked a memo in which an engineer tried to explain to his superiors what an open-source LLM means for their own proprietary tech. The memo concluded that the open-source community has lapped the major corporations and has an overwhelming lead on them.

This isn’t the first time companies have ignored the power of the open-source community. Sun never understood Linux. Netscape never understood the Apache web server. Open source isn’t very good at original innovations, but once an innovation is seen and picked up, the community can be a pretty overwhelming thing. The large companies may respond by trying to retrench and pulling their models back from the open-source community.

But it’s too late. We have entered an era of LLM democratization. By showing that smaller models can be highly effective, enabling easy experimentation, diversifying control, and providing incentives that are not profit motivated, open-source initiatives are moving us into a more dynamic and inclusive AI landscape. This doesn’t mean that some of these models won’t be biased, or wrong, or used to generate disinformation or abuse. But it does mean that controlling this technology is going to take an entirely different approach than regulating the large players.

This essay was written with Jim Waldo, and previously appeared on Slate.com.

EDITED TO ADD (6/4): Slashdot thread.

Posted on June 2, 2023 at 10:21 AMView Comments

On the Catastrophic Risk of AI

Earlier this week, I signed on to a short group statement, coordinated by the Center for AI Safety:

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.

The press coverage has been extensive, and surprising to me. The New York Times headline is “A.I. Poses ‘Risk of Extinction,’ Industry Leaders Warn.” BBC: “Artificial intelligence could lead to extinction, experts warn.” Other headlines are similar.

I actually don’t think that AI poses a risk to human extinction. I think it poses a similar risk to pandemics and nuclear war—which is to say, a risk worth taking seriously, but not something to panic over. Which is what I thought the statement said.

In my talk at the RSA Conference last month, I talked about the power level of our species becoming too great for our systems of governance. Talking about those systems, I said:

Now, add into this mix the risks that arise from new and dangerous technologies such as the internet or AI or synthetic biology. Or molecular nanotechnology, or nuclear weapons. Here, misaligned incentives and hacking can have catastrophic consequences for society.

That was what I was thinking about when I agreed to sign on to the statement: “Pandemics, nuclear weapons, AI—yeah, I would put those three in the same bucket. Surely we can spend the same effort on AI risk as we do on future pandemics. That’s a really low bar.” Clearly I should have focused on the word “extinction,” and not the relative comparisons.

Seth Lazar, Jeremy Howard, and Arvind Narayanan wrote:

We think that, in fact, most signatories to the statement believe that runaway AI is a way off yet, and that it will take a significant scientific advance to get there­—ne that we cannot anticipate, even if we are confident that it will someday occur. If this is so, then at least two things follow.

I agree with that, and with their follow up:

First, we should give more weight to serious risks from AI that are more urgent. Even if existing AI systems and their plausible extensions won’t wipe us out, they are already causing much more concentrated harm, they are sure to exacerbate inequality and, in the hands of power-hungry governments and unscrupulous corporations, will undermine individual and collective freedom.

This is what I wrote in Click Here to Kill Everybody (2018):

I am less worried about AI; I regard fear of AI more as a mirror of our own society than as a harbinger of the future. AI and intelligent robotics are the culmination of several precursor technologies, like machine learning algorithms, automation, and autonomy. The security risks from those precursor technologies are already with us, and they’re increasing as the technologies become more powerful and more prevalent. So, while I am worried about intelligent and even driverless cars, most of the risks arealready prevalent in Internet-connected drivered cars. And while I am worried about robot soldiers, most of the risks are already prevalent in autonomous weapons systems.

Also, as roboticist Rodney Brooks pointed out, “Long before we see such machines arising there will be the somewhat less intelligent and belligerent machines. Before that there will be the really grumpy machines. Before that the quite annoying machines. And before them the arrogant unpleasant machines.” I think we’ll see any new security risks coming long before they get here.

I do think we should worry about catastrophic AI and robotics risk. It’s the fact that they affect the world in a direct, physical manner—and that they’re vulnerable to class breaks.

(Other things to read: David Chapman is good on scary AI. And Kieran Healy is good on the statement.)

Okay, enough. I should also learn not to sign on to group statements.

EDITED TO ADD (9/9): The Brooks quote is from this excellent essay.

Posted on June 1, 2023 at 7:17 AMView Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.