CRYPTOGRAPHY AND COMPUTER SECURITY: CURRENT TECHNOLOGY AND FUTURE TRENDS

Bruce Schneier
schneier@counterpane.com
http://www.counterpane.com
Counterpane Systems
101 East Minnehaha Parkway, Minneapolis, MN 55419
(612) 823-1098
Fax: (612) 823-1590

HOPE
9 August 1997
New York, NY
INTRODUCTION
Cryptography can do some really cool stuff.

- It can protect privacy.
 - It separates the security of a message from the security of the media.
- It can provide for anonymity.
- It can authorize someone.
- It can facilitate trust.
- It can allow for digital credentials (authentication).
- It can validate the integrity of information.
- It can ensure the fairness of financial transactions.
- It can provide an audit trail for later dispute resolution.
- Cryptography stops lying and cheating.
None of it is new.

- Everybody used to have privacy: electronic communications such as telegraph and telephone have reduced it significantly.
- Physical recognition—face, voice, handwriting—used to provide authentication.
- Cryptography allows us to take existing business and social constructs from the real world and move them to cyberspace.
- Cryptography makes levels of security and privacy that were only available to very few available to everybody.
- Cryptography is a technological equalizer.
All of it is increasingly important.

- More/faster computers and networks; more interconnectivity
 - “To a first approximation, every computer is attached to every other computer.”
- Remote access, autonomous agents, distributed processing
- Stored content of real value
- Communications of real value
- Commerce of real value
- Relationships forming and existing in cyberspace
Unfortunately, most of the security products out there are not secure.

- Almost no real products use cryptography.
- Those that do usually incorporate it in at the last minute.
- And companies don’t hire cryptographic engineers; they think they can do it themselves.
- The products are also inflexible, hard to use, and buggy.
 - People disable security systems in order to get work done.
- Existing solutions don’t scale.
- Products don’t usually solve the correct problem.
 - Sometimes they solve a slightly different problem.
 - Sometimes they are based on incorrect trust assumptions.
- Products sometimes cause more security problems than they solve.
- Operating systems are much more complex and buggy; this undermines the security of anything built on top of it.
People buy the stuff because they don’t know any better.

- No “FDA” for computer security products
- Poor education among corporate buyers
- Active disinformation campaign by government
 - NSA has to deal with the “equities issue,” whether to protect ours or to attack theirs.
This situation will get worse before it improves.

- The important stuff is handled electronically.
 - Manual processing is for the unimportant stuff.
 - More financial processing will move to cyberspace.
 - More medical information will move to cyberspace.
 - Judicial and law enforcement officials will depend more heavily on computer databases.
 - Companies will depend more heavily on networks and databases.
- Newer technology is less secure, not more.
 - Complex systems
 - Poorly-understood effects of new technologies
 - The rush to market
This situation will get worse (cont.)

- The best (cheapest, fastest, easiest) media is the most insecure.
 - Internet, cellular, video on demand, automated stock trading
 - Security adds complexity and decreases performance—somewhat.
- Telecommunications services continue to diversify.
 - More avenues of possible attack.
- More mobile solutions.
- Changes in cyberspace are coming faster and faster.
- Security goes against philosophy of the net.
- Security slows down progress.
THREATS IN THE DIGITAL WORLD
The unchanging nature of attacks

- Attacks against digital systems will be the same as attacks against their analog analogues.
- Criminals will attack commerce systems for financial gain.
- Privacy violations by marketers, criminals, police.
The changing nature of attacks

- Automation
 - Marginal profitability of each success acceptable
 - Marginal probability of success acceptable
 - Ease of casual privacy violations
- Action at a distance
 - Difficulty of tracing attacker
 - Difficulty of prosecution
 - Jurisdiction shopping
- Propagation of successful techniques
 - Hacker newsgroups, bulletin boards, mailing lists
 - Only the first needs skill; the rest can use software.
Adversaries

- Hackers: informal and institutional
- Insiders
- Lone criminals
- Commercial espionage
- Press
- Organized crime
- Terrorists
- National intelligence
Criminal attacks

- “How can I acquire the maximum financial return by attacking the system?”
- Forgery, misrepresentation, replay, repudiation
- Generally opportunistic
- Minimum necessary resources
- Focuses on low-tech flaws
- Focuses on the weakest systems
- Medium risk tolerance: willing to risk job or jail time.
Electronic commerce

- Fraud has been attempted against all commerce systems:
 - Weighted scales, shaved coinage, counterfeit currency, fake stock certificates,
 - Check, credit card, and ATM fraud.
- Electronic commerce will be no different.
 - Ease of automation
 - Difficulty of isolating jurisdiction
 - Speed of propagation
- Audit is essential.
 - Preventing crime is a lot harder than detecting crime.
 - Detecting crime is not enough, you have to prove it in court.
- Traditionally, fraud prevention has been reactive.
- We need to be proactive.
Identity Theft

- As more identity recognition goes electronic, identity theft becomes easier.
- As more systems require electronic identity recognition, identity theft becomes more profitable.
- We have lived for 30 years in the fiction that “mother’s maiden name” is good enough.
- We will never get back to that point again.
- Secure electronic commerce should not rely on electronic identity alone or security.
Privacy violations

• Targeted attack
 – Spying, stalking, industrial espionage
 – Cryptography can only protect up to the point where non-cryptographic attacks become cheaper.
 – End-to-end cryptography can protect absolutely against non-invasive attacks.

• Data harvesting
 – Generating a database of qualified “prospects.”
 – Even moderate levels of cryptography, if ubiquitous, make the collection problem intractable.
 – Cryptography can protect absolutely.
Publicity attacks

- “How can I get the most publicity by attacking the system?”
- Attacker typically skilled, has access to significant resources and large amounts of time, but has few financial resources.
- Low risk tolerance: attacker willing to risk publicity, but probably not jail time.
Electronic vandalism

- Form of publicity attack
- Example: defacing web pages
- No profit motive
- Directed against “deserving” targets: political, corporate, etc.
Denial of service

- Example: flooding e-mail servers
- Almost impossible to protect against
- Cyberspace is designed for communication
- Only workable solution is to detect attacker and prosecute
Legal attacks

- “How can I discredit the system to prove my client’s innocence?”
- Attacker does not need to discover flaws; he just has to discredit the system in the eyes of a judge and jury.
- Attacker can use the discovery process to demand details of target system.
- Attacker has all the resources of the publicity attack, plus significant financial support.
- Can be a well funded attack.
Information warfare

- Terrorism
- Covert operations
- Against individuals, companies, countries
- Against particular systems or parts of infrastructure
- Attack could originate from foreign soil
 - Jurisdiction problem.
- High risk tolerance: willing to risk life and limb
- Possibly very well funded
Attackers have it easier

- Attackers cheat.
- And the odds are in their favor.
 - An attacker needs to find one successful attack.
 - A defender needs to protect against every possible attack.
- They can use techniques defenders never considered.
- They don’t have to follow the defender’s threat model.
WHAT CRYPTOGRAPHY CAN AND CAN’T DO
Basic Tools of Cryptography

- Symmetric encryption
 - Provides secrecy among parties who share a common key.
- Message authentication codes
 - Provides integrity checking and authentication
- Public-key encryption
 - RSA allows someone to receive secret messages from people he hasn’t met yet.
 - Diffie-Hellman key exchange establishes a secret over an insecure channel.
- Digital signature schemes
 - Establishes integrity, authenticity, and non-repudiation.
- Secure hash functions
 - Used to reduce a message to a fixed size for signature.
Security problems solved by cryptography

- Privacy of stored data, messages, and conversations
- Secure electronic commerce
- Transaction non-repudiation
- User and data authentication
- E-mail security (encryption and authentication)
- Secure software updates
- Multi-party control
- Secure audit logs
Why cryptography can’t really solve any of them

- The realities of the system often prevent cryptography from being applied where it is required.
- Implementation much harder than stringing these tools together.
- Mistakes are often added elsewhere in the process.
- There’s lots of good cryptography out there; the problem is figuring out how to use it properly.
- Given any set of security criteria, it is possible to design a system that meets the criteria and is still insecure.
- “Buzzword compliant” is not enough.
Non-cryptographic parts of the solution

• Trust management
 – Trust is a complex social phenomenon, and cannot be solved with a single “certificate.”
 – There is no global name space in the world.
 – There is no single level of assurance in the world.
 – Certificates are useless without some sort of liability.

• Access control
 – Authentication is not the same thing as authorization.
 – Authentication is automatic; authorization requires thought.
Non cryptographic parts of the solution (cont.)

- Human-computer transferance
 - Computer security works in the digital realm; transferring things from people to the digital world is very difficult.
 - There is no assurance that what you see is what you get.
 - There is no assurance that what you get actually works.
- Human-computer interactions
 - Security works better when it is visible to user.
 - On the other hand, user doesn’t want to see security.
 - People find security intrusive.
 - People work around security measures.
 - People can’t make intelligent security decisions.
- Passwords
 - People can’t choose, remember, or keep good secrets.
Non cryptographic parts of the solution (cont.)

- Secure perimeters
 - Tokens: smart cards, access tokens, electronic wallets, dongles, hardware meters.
 - Tamperproof hardware is impossible.
 - Tamper resistant hardware is mostly impossible.
 - Tamper-evident hardware might work, sometimes.
 - Many systems rely on this anyway
 - Any system where the device and the secrets within the device are under the control of different people has a fundamental security flaw.
Non cryptographic parts of the solution (cont.)

- **Key-escrow/key-recovery/GAK**
 - It is easy to implement key backup, because it is in the interest of the user.
 - It is very difficult to implement GAK (Government Access to Key), because it is contrary to the interests of the user and must survive a hostile user.

- **Relationships**
 - Systems can leverage relationships between the parties.
 - An ongoing relationship reduces the incentive to attack the system, and increases the likelihood of detection.
 - Reputation can be important
 - Anonymous systems are much riskier.

- **Protocols that rely on the “ethics of strangers”**
The problem of testing security

- Flaws can be, and are, everywhere.
 - Areas of vulnerability include threat model, system design, implementation, user interface.
 - Two secure subsystems can interact to create new flaws.
- These flaws are common, and invisible
 - Security is orthogonal to functionality.
 - There is no such thing as a comprehensive security checklist.
 - Often the only feedback available to developers is the discovery (sometimes via the media) that they failed.
 - No amount of beta testing can ever uncover a security flaw.
The problem of testing security (cont)

- Experienced security testing can discover flaws.
 - Testing for any given weakness is easy.
 - Testing for all known weaknesses is very hard.
 - Testing for all possible weaknesses is impossible.
- Workable solutions
 - Hire experienced cryptosystem and security designers.
 - Test the system against a comprehensive attack list.
- Cryptography doesn’t have to be perfect, but the risks have to be manageable.
 - “A secure computer is one that has been insured.”
Needs for Privacy

- Most businesses (and governments) don’t need long-term security
- Mailing lists, business plans, negotiations, product research
- Commerce privacy needs are moderate.
- Financial information might need to be secure for a decade.
- Exceptions are embarrassments: personal, political, or business.
Needs for Authentication

- Authenticating sessions versus authenticating transactions
- Strength depends on application and transaction value
- Need for audit trail depends on application
- Audit trail must not only determine who committed fraud; it must be able to convince a jury that the person committed fraud, while at the same time not compromising the future security of the system.
EVALUATING CRYPTOGRAPHIC PRODUCTS
Security requirements

- Security requirements depend both on the value of what is being protected and the anticipated attacks.
- Most businesses don’t need long-term security.
- Authentication needs depend heavily on the application.
- Electronic commerce needs depend on the value of the transaction: moderate privacy, moderate to strong authentication, good audit.
- Questions to ask
 - How valuable is the data or service being protected?
 - To whom it is valuable to?
 - Who does the system require me to trust?
 - What is the skill/time/resources necessary to attack the system?
 - What would the cost of compromise be, including loss of time and manpower, loss of reputation, costs to fix already-fielded systems?
Soundness of the cryptography

• Algorithms
 – Key length
 – Look for published algorithms that are generally considered to be secure: DES, IDEA, RC4, RC5, Blowfish, MD5, SHA, RSA, ElGamal, DSS.
 – If the algorithms are “Proprietary,” they are probably lousy.

• Protocols
 – Look for published protocols that are generally considered to be secure: ESP, AH, SKIP, Photuris, SSH, S/WAN, SSL, PGP, S/MIME, SET, etc.
 – Avoid in-house proprietary designs that are unpublished.
Soundness of the cryptography (cont.)

- Specifications
 - Look for detailed specifications of the system. Any good security system can be published without adversely affecting security.
- Look for an attack analysis.
 - What is the cheapest attack?
 - What is the “low-skill” attack?
 - What attacks are outside the scope of the system?
 - What security assumptions is the system based on?
 - What happens if any of those assumptions are wrong?
 - What sorts of upgrade or disaster recovery plan does the system have?
- Look for security analyses by reputable cryptographers. Ask the manufacturer to provide copies of them. Be wary if there aren’t any.
Compliance to standards

- Standards not only improve a product’s security, but increase its potential interoperability.
- Commonality of public-key infrastructure allows certificate infrastructure to be used for a variety of applications.
 - X.509 is the current standard
 - But there is lot of room for improvement.
 - Watch SDSI/SPKI.
- E-mail encryption standard allows different mail programs to communicate securely with each other.
 - PGP vs S/MIME
Compliance to standards (cont.)

- **IP security**
 - The IETF is standardizing on a suite of protocols: ESP and AH.
- **Transport layer security**
 - The IETF is working on TLS, based on SSL 3.0.
- **Tokens**
 - This is currently a mess.
 - Cryptoki has problems.
 - Many proprietary products that don’t work with most applications.
- **APIs**
 - There are many; no one is clearly better.
 - It is probably impossible to make any one API suitable to everyone.
Legal restrictions

- Many countries have restrictions on cryptography: import, export, and use.
 - The U.S. government does not restrict the use of encryption, but has strong restrictions on its export.
 - There are three basic exportable types of encryption: home-grown, badly flawed cryptography, 40-bit cryptography, and escrowed cryptography.
 - The State Department is allowing the export of 56-bit DES if the exporter agrees to implement key escrow in short order.
 - More companies are implementing key escrow in order to gain export approval for their products. In many circumstances, these are suitable for corporate use.
Legal restrictions (cont.)

- U.S. regulations (cont.)
 - The U.S. has no restrictions on access-control or authentication systems; they only restrict products that use cryptography to provide privacy.
 - Additional allowances are made for financial institutions.
 - This is all in major flux right now.

- Patent issues
 - Public-key cryptography
 - Algorithm patents
 - Other patents
Ease of use

- Security vs. Functionality
 - Security often favors moving cryptography close to the application to maximize control.
 - Functionality often favors moving cryptography away from the application to maximize transparency.
Product availability

- The current products on the market are very immature
 - Inflexible, unforgiving, and hard to use
 - Buggy
 - Limited technical support
 - Poor integration with existing systems
- Hardware and software manufacturers seem to think it is possible to design a product and then build security in as an afterthought.
- Many buyers are forced to develop custom software.
- This can only get better.
 - The Internet enforces standards
 - Cryptography is migrating into end-user applications
- Beware government attempts to limit the availability of strong cryptography.
DEVELOPMENTS TO WATCH
Developments to watch

• Technologies
 – Tamper-resistant hardware
 • Chips
 • Tokens
 • Electronic wallets
 – Biometrics
 • Fingerprints
 • Keyboard latency
 • Etc.
Developments to watch (cont.)

- Trust management
 - Transfer of trust
 - Certificate issuance
 - Certificate storage and retrieval
 - Cross use of certificates
 - Certificate revocation
- Internet standards
 - TCP/IP, WWW, e-mail, telnet, rlogin, etc.
 - Will it allow the richness of human interaction: anonymity, aliases, trust, reputations?
Developments to watch (cont.)

- Human/computer interface
 - User friendly key-management
 - “Invisible” security

- Legal infrastructures to support cryptography
 - Digital signature acts
 - Existing attempts often misguided
 - Vehicles for electronic commerce
 - Criminal statutes to prosecute digital criminals
 - Laws are better when they are technologically invariant.
 - Solutions to the jurisdiction problem

- Government cryptography restrictions
 - Export/import/use control
 - Government access to key (GAK) requirements
Developments to watch (cont.)

- Advances in cryptography
 - New algorithms
 - NIST’s Advanced Encryption Standard (AES)
 - Elliptic Curve Cryptography
 - Quantum cryptography
 - New attacks
 - More computers, faster computers, more efficient computation, fundamental advances in cryptanalysis
 - Quantum cryptanalysis
 - New infrastructures
 - Certificate management: issuance, retrieval, storage, revocation
 - Will they propagate the same mistakes?
Conclusions

- “The problem with bad cryptography is that it looks just like good cryptography.”
- Successful attacks are often kept secret.
 - Unless attackers publicize
- We need to be proactive.
 - Understand the real threats to a system
 - Design systems with strong cryptography
 - Build cryptography into systems at the beginning
 - Build systems that scale
- Perfect solutions are not required, but systems that can be broken completely are unacceptable.
Conclusions (cont.)

• It is prudent to prepare the worst.
 – Systems fielded today could be in place 20 years from now.
 – Things will get worse before it gets better.
 – Things will get better.

• The social problems are much harder than the mathematics.

• “If you think cryptography can solve your problem, then you don’t understand your problem and you don’t understand cryptography.”
FURTHER READING

- Cryptography
FURTHER READING (cont.)

- Network Security
FURTHER READING (cont.)

- E-Mail
- Electronic Commerce
- Privacy