
1

Implementation of the Twofish Cipher
Using FPGA Devices

Pawel Chodowiec, Kris Gaj

pchodowi@gmu.edu, kgaj@gmu.edu

Technical Report
Electrical and Computer Engineering

George Mason University

July 1999

2

Implementation of the Twofish Cipher Using FPGA Devices

George Mason University

Pawel Chodowiec, Kris Gaj

Table of Contents

1 SHORT DESCRIPTION OF THE TWOFISH CIPHER .. 3

2 ANALYSIS OF THE TWOFISH CIPHER MAIN COMPONENTS.. 7

2.1 FIXED ROTATIONS.. 7
2.2 ADDITIONS MODULO 2 (XOR).. 7
2.3 ADDITIONS MODULO 232

 ON 32-BIT LONG WORDS .. 7
2.4 KEY DEPENDENT S-BOXES.. 7
2.5 THE MAXIMUM DISTANCE SEPARABLE MATRIX .. 8
2.6 THE PSEUDO-HADAMARD TRANSFORM .. 9

3 THE STRUCTURE OF THE TWOFISH CIPHER .. 10

3.1 IMPLEMENTATION OF ENCRYPTION AND DECRYPTION.. 10
3.2 IMPLEMENTATION OF THE KEY SCHEDULE ... 10

4 DESIGN OF THE CIPHER INTERFACE.. 12

4.1 TWOFISH INTERFACE.. 12
4.1.1 Interface signals.. 12
4.1.2 Addressing .. 13
4.1.3 Data and key flow.. 14
4.1.4 The transmission protocol.. 15
4.1.5 Operation sequence performed by our device after start... 16
4.1.6 Operation sequence recommended for the host device.. 16

4.2 THE TWOFISH ROUND CIRCUIT ... 17

5 THE RESULTS OF TWOFISH IMPLEMENTATION USING XILINX FPGA DEVICES 18

5.1 IMPLEMENTED PARTS ... 19
5.2 IMPLEMENTATION OF TWOFISH COMPONENTS ... 19

5.2.1 q – permutation ... 19
5.2.2 MDS matrix... 20
5.2.3 PHT transform .. 20
5.2.4 Summary of main components implementations.. 20

5.3 IMPLEMENTATION OF THE F-FUNCTION ... 20
5.4 IMPLEMENTATION OF THE FULLY FUNCTIONAL ENCRYPTING DEVICE .. 21

6 SUMMARY .. 22

7 BIBLIOGRAPHY... 23

APPENDIX - LIST OF SOURCE FILES.. 24

3

1 Short description of the Twofish cipher

Twofish is a 128-bit block cipher. It can work with variable key lengths: 128, 192, or 256-bits. In this report,
only a version with 128-bit key length will be discussed. Twofish consists of 16 rounds built similarly to the Feistel
network structure. Fig. 1 shows an overview the cipher structure. The only exceptions from the pure Feistel network
are two fixed rotations by one bit, performed together with the XOR operations on outputs of the F-function.

P (128 bits)

+

+

+

+<<< 8

<<< 1

>>> 1

S-box 0

S-box 1

S-box 2

S-box 3

MDS

h

S-box 0

S-box 1

S-box 2

S-box 3

MDS

h

PHT

F

K2 K3K1K0

K2r+8

K2r+9

K6 K7K5K4

C (128 bits)

R
ep

ea
t 1

6
tim

es

Output
Whitening

Input
Whitening

Figure 1 - Twofish overview (encryption).

Additionally, input and output data are XOR-ed with eight subkeys K0…K7. These XOR operations are
called input and output whitening. The F-function consists of five kinds of component operations: fixed left rotation
by 8 bits, key dependent S-boxes, Maximum Distance Separable (MDS) matrices, Pseudo-Hadamard Transform
(PHT), and two subkey additions modulo 232.

There are four kinds of key dependent S-boxes. Four different S-boxes together with the MDS matrix form
an h-function. This h-function appears two times in the cipher structure, which causes significant redundancy.

Key dependent S-boxes are something new in a cipher design. In majority of known ciphers, S-boxes are
used as a non-linear fixed substitution operation. In Twofish, each S-box consists of three 8-by-8-bit fixed
permutations chosen from a set of two possible permutations, q0 and q1. The structure of all S-boxes is shown in Fig.
2. Between these three permutations, XOR operations are performed with subkeys S0, S1 (refer to the key schedule
description, at the end of this section). These subkeys are computed only once for a particular global key, and stay
fixed during the entire encryption and decryption process.

4

q0

q1

q0

q1

q0

q0

q1

q1

q1

q0

q1

q0

S0 S1

S-box 0

S-box 1

S-box 2

S-box 3

8

8

8

8

32

8

8

8

8

Figure 2 - S-boxes.

Although each q-permutation represents a fixed function, it is also described by a regular structure shown in
Fig. 3. Main components of the q-permutations are 4-by-4-bit fixed S-boxes t0...t3. Both permutations q0 and q1 have
the same internal structure, and differ only in the contents of the S-boxes t0...t3.

>>>1

t0 t1

a(0), 0, 0, 0

>>>1

t2 t3

a'(0), 0, 0, 0

b'

a b

a'

4 4

44

A802F746ED3C159Bt

F3B28DE0A96157C4t

809F5AD673C4B2E1t

5CA04913E67FDB82tq

AC5803B9E6214F7Dt

17423F8C09D6E5ABt

D9076A4F53218BCEt

4ACE95B023F6D718tq

FEDCBA9876543210

3

2

1

01

3

2

1

00

8

8

Figure 3 - Permutation q.

Another function used in Twofish is a 4-by-4-byte MDS matrix. The transformation performed by this matrix is
described by the formula:





















•



















=





















3
y

2
y

1
y
0

y

5BEF01EF

EF015BEF

01EFEF5B

5B5BEF01

3
z
2

z
1

z
0

z

where: y3...y0 are consecutive bytes of the input 32-bit word (y3 is the most significant byte), and
z3...z0 form the output word.

5

This matrix multiplies a 32-bit input value by 8-bit constants, with all multiplications performed (byte by
byte) in the Galois field GF (28). The primitive polynomial is x8 + x6 + x5 + x3 + 1. Only three different
multiplications are used effectively in the MDS matrix, namely multiplication

- by 5B16 = 0101 10112 (represented in GF(28) by a polynomial x6 + x4 + x3 + x + 1),
- by EF16 = 1110 11112 (x

7 + x6 + x5 + x3 + x2 + x + 1), and
- by 0116 = 0000 00012 (equivalent element in GF(28) is just 1) - obviously the result is equal to the input

value.

Finally, the PHT transform is a simple function that consists of two additions modulo 232, as shown in Fig.
1. Results of the PHT transform can be described by the following equations:

a' = a + b
b' = a + 2*b

Both additions are de facto independent and can be performed simultaneously.
The nice feature of the Twofish algorithm is that, after little modifications, we can perform encryption and

decryption using exactly the same structure. It is very valuable for hardware implementations. Decryption requires
applying subkeys in the reverse order and making a little modification to the main cipher structure as shown in Fig.
4.

a)

<<< 1

>>> 1

F - function

b)

<<< 1

>>> 1

F - function

Figure 4 - Differences between the encryption and decryption a) encryption b) decryption.

Key schedule seems to be another strong side of the Twofish algorithm. There are two different sets of
subkeys: S and K.

Two subkeys S0 and S1 are fixed during the entire encryption and decryption process. Both of them are
obtained as a result of multiplying an appropriate part of a global key (128-bit wide, called M) by RS matrix. This
matrix also performs multiplication in the Galois field GF (28), but the primitive polynomial is different then for this
MDS matrix: x8 + x6 + x3 + x2 + 1. The algorithm used to compute S keys is given by:

































•



















=





















+

+

+

+

+

+

+

78i

68i

58i

48i

38i

28i

18i

8i

i,3

i,2

i,1

i,0

m

m

m

m

m

m

m

m

039EDB585A8755A4

193DAE47C1FCA102

E568C61EF38256A4

9EDB585A8755A401

s

s

s

s

where:
- index i is from the range 0...1, and indicates the appropriate key S0 or S1,
- si,3...si,0 are 8-bit parts of the 32-bit key Si (si,3 is the most significant byte),
- m8i+7...m8i are 8-bit parts of the 128-bit user supplied key M.

6

Remaining set of subkeys K is computed in a structure very similar to that used for encryption. The only
difference is that there is no key addition after the PHT transform, and that the fixed left rotation by 8 bits is
performed after instead of before the second h-function (compare Fig. 1 and Fig. 5). This feature enables computing
subkeys K using the same piece of hardware as the one used for encryption. The global key M is used to
parameterize all key dependent S-boxes. All subkeys K are independent of each other, and are computed on the
basis of their index value. It means, that they can be computed on the fly in both directions: for encryption and
decryption.

q0

MDS
q1

q0

q1

q0

q0

q1

q1

q1

q0

q1

q0

h

2i

2i

2i

2i

M2 M0

MDS

h

2i + 1
M3 M1

2i + 1

2i + 1

2i + 1

+

+<<< 8 <<< 9

PHT K2i

K2i+1

q0

q1

q0

q1

q0

q0

q1

q1

q1

q0

q1

q0

Figure 5 - Generation of subkeys K.

Keys M3…M0, shown in Fig. 5, are derived directly from the main 128-bit key. They are just 32-bit parts of
the main key, where M3 corresponds to the most significant 32 bits, and M0 to the least significant bits of M. These
subkeys are used to customize S-boxes, and stay fixed for all rounds.

The variable i is from range 0…19, and is used to generate a set of corresponding subkeys K0…K39.

7

2 Analysis of the Twofish cipher main components

The analysis presented in this section concerns the ability of implementing Twofish using Xilinx FPGA
devices.

In the following section, all basic functions used in Twofish, and the way of implementing them in Xilinx
FPGAs will be discussed. These basic functions include:

- fixed rotations
- additions modulo 2 (bit by bit)
- additions modulo 232 on 32-bit long words
- key dependent S-boxes
- MDS matrices
- PHT transforms

2.1 Fixed rotations

This kind of operations is easily realizable in hardware. They do not even require any additional resources.
The only thing we have to do is to reorder interconnections between logic cells.

2.2 Additions modulo 2 (XOR)

This is a second very inexpensive and fast operation. Each output bit depends on value of only two input
bits. It is obvious that such operation can be done using only a single F or G lookup table in Xilinx FPGA.
Therefore, one CLB can be used to compute this function on two bits. For example, XOR on two 32-bit long words
requires only 16 logic cells. Besides, each XOR uses only two inputs, but there are four inputs available in each
lookup table. As a result, in many cases, XOR can be combined with other operations and implemented in the same
cell.

2.3 Additions modulo 232 on 32-bit long words

Although the addition modulo 232 is not as simple operation as XOR, it can still be realized using
comparable amount of hardware. The most convenient way to perform this operation is to compute the sum position
by position, and use carry chain to propagate intermediate results from the least significant to the most significant
position. Such structure is shown in Fig. 6. It is obvious that the time of signal propagation through the entire carry
chain limits the speed of addition. The longer words are being added, the longer it takes to compute the result.
Fortunately, Xilinx logic cells contain dedicated fast connection between neighboring cells designated specifically
for carry chains. Xilinx Co. claims that their carry chain is so fast, that all known methods of speeding up addition
have marginal effect for words shorter or equal to 32 bits [4]. Using this structure permits implementing one 32-bit
long adder using only 16 logic cells.

+++

Figure 6 - Carry chain.

2.4 Key dependent S-boxes

Basically, there are two possible ways to implement S-boxes [1]:
- as a 256-byte RAM, or
- as a direct logic implementation.

8

First type of design would require eight 256-byte memories. Xilinx FPGA devices do not contain any dedicated
RAM and thus a 256-byte RAM would have to be implemented using logic cells. Each CLB can be configured as 16
x 2 bit RAM memory [4]. Therefore, 512 (8 * (256 x 8) / (16 x 2)) logic cells are needed to implement all eight S-
boxes, which is a large number. Additionally, the access time to this memory would be long. However, such solution
can still be taken into account in case of the Altera FPGA devices, where additional RAM elements (EAB) exist.
Additional drawback of this method is a long time of key exchange, because the contents of all memory cells have to
be precomputed, based on the current key.

In a second type of design, we have a degree of freedom. First of all, each q-permutation can be
implemented as a 256-byte ROM, or as a logic function (see Fig. 3). Although, there are only two different
permutations, they are used simultaneously in eight S-boxes. It is obvious, that this kind of implementation also
requires too many logic cells in Xilinx FPGA, and it will not work faster than the direct logic implementation.
Hence, let us consider only the direct logic implementation. As shown in Fig. 3, each q-permutation consists of four
4-by-4-bit S-boxes t0...t3, and some additional logic. Since each of these little S-boxes forms only a four-bit input
function, it can be easily realized using only two parallel CLBs. In other words, the delay caused by one S-box t is
equal to the delay of a single CLB. Remaining operations in the permutation q are easy to implement using two
levels of logic cells. In summary, each q-permutation can be implemented using 16 CLBs arranged in a four level
structure.

Taking into account our calculations for q-permutations, each S-box S0...S3 should take 56 logic cells (3 *
16 CLBs for each q-permutation + 8 CLBs for XOR with fixed keys S0 and S1). However, its structure consists of 14
levels of logic cells (3 q-perm. * 4 levels per each permutation + 2 XORs * 1 level per each XOR). It means that
computation can consume a lot of time. Fortunately, each S-box can be easily divided into several logic layers using
registers, so that we can still use fast clock rate.

2.5 The Maximum Distance Separable matrix

Implementation of the MDS matrix can seem very difficult, but closer analysis of operations performed in
this matrix leads us to a different conclusion. As it was shown in section 1, there are only two different
multiplications that require to be implemented. In case of multiplication by 5B16, every output depends on at most
four inputs. Therefore, this multiplication consumes only four parallel CLBs – see Fig. 7a.

a)
x7 x1

y7

x7 x5 x1

y5

x6 x4 x1 x0

y4

x5 x3 x0

y3

x4 x2 x1

y2

x3 x1 x0

y1

x2 x0

y0

x6 x0

y6

CLB 1 CLB 2 CLB 3 CLB 4

b)
x7 x1

y7

x7 x6 x1

y5

x6 x5 x1

y4

x5 x4 x0

y3

x3 x2 x0

y1

x2 x0

y0

x6 x0

y6

CLB 1 CLB 2 CLB 3 CLB 5

x5 x0 x4 x3 x1

y2

CLB 4

x2 x0x0 x7 x4 x3 x1 x1

Figure 7 – Multiplication by a constant in the GF(28)
a) Multiplication by 5B16 ≡≡ x6 + x4 + x3 + x + 1
b) Multiplication by EF16 ≡≡ x7 + x6 + x5 + x3 + x2 + x + 1

9

The multiplication by EF16 contains two outputs depending on five input bits. These outputs require an
entire CLB each, therefore the entire multiplication will take five parallel CLBs. Nevertheless, any multiplication in
GF(28) can be implemented using up to eight parallel CLBs. As a result, the time of a single multiplication is equal
to the delay of one CLB.

The results of all multiplications in each row of the MDS matrix are finally XOR-ed bit by bit. Such
operation needs only four CLBs for each row. To compute one byte of the result, it is necessary to perform only
three multiplications. Thus, we need only 17-18 logic cells (4-5 CLBs per multiplication * 3 multiplications + 4
CLBs for XOR). All CLBs are organized in a two level structure, allowing computing results in a very high speed.
The entire MDS matrix implementation can fit in 52 cells. This number of cells results from the fact that there are
two identical multiplication factors in each column of the MDS matrix (see section 1), and the corresponding
multiplication operation need to be performed only once. 52 = (4 columns * (4 + 5 CLBs required for both
multiplications in the column) + 16 CLBs for final addition).

2.6 The Pseudo-Hadamard Transform

The PHT transform is composed of two additions. It was shown in section 1 that both additions can be
performed in parallel. The only additional operation is one left shift by one bit, as shown in Fig. 8. Obviously, both
additions are implemented in the same way as ordinary addition modulo 232, discussed in section 2.3.

+

<< 1

+

Figure 8 - The PHT after changes.

10

3 The structure of the Twofish cipher

The Twofish cipher can be implemented in many ways. Each of these ways can be better or worse
depending on particular requirements. In the following section, we would like to discuss some of the possible
alternative methods of implementing Twofish.

3.1 Implementation of encryption and decryption

First of all we can choose between implementing the cipher using purely combinational design (not
counting the main register required to store a final result of each round), and using sequential design with registers
dividing the combinational logic into smaller but faster blocks.

First kind of design is probably the fastest, but also hard to optimize for minimum area, because function
sharing is difficult to apply. Additionally, a combinational design may work only with a very low clock frequency,
and its synthesis may be significantly longer. The speed of the sequential design is lower, because we are not able to
divide the circuit into exactly equal blocks, and this way we lose precious nanoseconds. On the other hand, in many
cases, a sequential design allows time sharing of the same part of the circuit between various functions, which can
significantly reduce the amount of area consumed by this design. Moreover, in the ECB mode of the block cipher (as
well as in more complex interleaved modes), the sequential design may increase the encryption speed directly
proportionally to the number of pipelined stages.

Lets take into consideration the amount of area consumed by the Twofish cipher. The minimal
implementation must consist of at least one round of encryption and decryption, and a memory containing all
subkeys (we assume that implementation of such memory takes less space than any additional circuit designated
specifically for subkeys generation). In the simplest situation, the implementation of one round (basically only F
function) can be directly based on the cipher structure. In such case, we need to use eight S-boxes, two MDS
matrices, one PHT transform and two 32-bit subkey adders. It would take about 550 logic cells: 2*(4 S-boxes * 3 q-
permutations * 16 CLBs for each q-permutation + 52 CLBs for MDS) + 32 CLBs for PHT + 32 CLBs for subkey
adders. The same amount of area has to be reserved in case of purely combinational logic and in case of sequential
logic, because all registers cost no additional hardware in FPGAs. But looking at the cipher structure we can easily
find a significant redundancy caused by two h-functions (each consists of four S-boxes and one MDS matrix). Each
h-function consumes about 250 CLBs. We can modify this structure a little, and get rid of redundancy at the cost of
only one clock cycle. It is presented in Fig. 9.

h-function
<<< 8

reg

reg

PHTR0

R1

Figure 9 - Modified structure of the g-function.

Losing one clock cycle does not mean that our speed will decrease dramatically. For example, we can
divide our cipher into several layers of combinational logic separated by registers, and run the circuit with a high
clock frequency. The resulting encryption speed will be almost the same, although the operation will be performed
in more clock cycles. Loss of only one clock cycle will cause only a slight speed decrease, but, on the other hand, it
will save a lot of area. Our particular implementation, after modification, will need approximately 340 logic cells: 4
* 3 * 16 for S-boxes + 52 for MDS + 32 for PHT + 32 for subkeys adders + 32 for additional register and
multiplexer. Of course discussed above modification is possible only in a sequential design, and it shows one of the
main limitations of purely combinational designs.

3.2 Implementation of the key schedule

Key schedule can be implemented in even more different ways than encryption. In case of most today’s
ciphers, all subkeys have to be precomputed first and then stored in a memory. We need at least one memory to store
all 42 subkeys K0...K39, S0, S1, each 32-bit long. A single Xilinx logic cell can be configured as a 32 x 1 RAM

11

memory, so that to store all subkeys, we would have to use at least 42 / 32 * (32 x 1) = 64 CLBs. For greater
convenience, we would actually need three 32-bit memories, one for whitening subkeys, and two others for the rest
of subkeys K, where odd and even keys are kept in separate memories. Each of these memories will store maximum
16 subkeys. In such case, a single CLB can be configured as a 16 x 2 RAM memory, and it is sufficient to use only
48 of CLBs for all subkeys K.

Much more inconvenient are subkeys S0 and S1. They cannot be stored in any of the above memories,
because they are used simultaneously with the other sybkeys. Moreover, even both keys S cannot be stored together
if the cipher round is implemented as a purely combinational logic. Therefore, storing of these subkeys consumes
additional 32 CLBs.

The computation of internal keys can be done either on-chip or off-chip. If it is performed on-chip, we have
to provide additional block of hardware designated only for this operation. Fortunately, in Twofish, the circuit used
for subkey generation is very similar to the one used for encryption. After some little modifications, the same block
of hardware can be used for both encryption and key scheduling. The only part of key scheduling that still requires
distinct hardware is RS matrix. So far, we did not analyze this matrix and we cannot say how much area it is going
to take.

The other possibility is to precompute all subkeys outside of the circuit, and then download them into the
circuit memory. This method requires implementing only a memory, but is less convenient, and may affect the
security of the implementation.

The main drawback of both methods is a long time of key exchange. In some applications it may be
required to change keys very often, and this time may become critical.

To minimize the time of key exchange, the subkeys can be computed on the fly. In case of Twofish, it is
relatively easy, because all subkeys are independent of each other. As a result, the key exchange time is limited only
by the time of performing multiplication by RS matrix. But nothing comes for free. We have to design additional
logic to perform subkeys computation simultaneously with encryption. The straightforward implementation of this
function will double the size of the circuit. However, it seems to be possible to compute all subkeys on the fly in the
same circuit as encryption by using time sharing. So far, we did not investigate the time penalty inferred by this
option.

12

4 Design of the cipher interface

Our project is divided into two distinct parts: Twofish round circuit and external interface. The round
circuit describes exactly one round of the Twofish cipher, including encryption and decryption. The round can be
run repeatedly to perform entire encryption or decryption process. Our design does not include a key schedule
implementation, because we assumed that the speed of key scheduling has a secondary influence on results of
comparison of different ciphers. However, the Twofish key schedule is very similar to encryption, and seems to be
one of the strong points of this cipher. Therefore, we do not exclude its implementation in the future. In present
implementation, all subkeys have to be computed off-chip and then written to the appropriate on-chip memories and
registers.

4.1 Twofish interface

External interface is of our own invention, and should not be taken into account during comparison of
efficiency of various ciphers. Our purpose was to create a general-purpose interface, which will be very easy to
operate in a microprocessor system, and will allow performing encryption with the maximum speed, using an
arbitrary AES candidate cipher.

4.1.1 Interface signals

All signals available in the interface are shown in Fig. 10.

Data_bus[31..0]

/write

/read

clock

reset

key/data

encr/decr

address[5..0]

busyTwofish implementation

6

32

enable

Figure 10 – Signals on the interface.

Signals meaning:
• data_bus[31..0] – 32-bit wide bidirectional data bus. The 31st bit data_bus[31], is the most significant one.
• address[5..0] – 6-bit wide address bus allows accessing all registers defined within the circuit. The 5th bit

address[5], is the most significant one.
• /write – Clocking signal for writing operations. The rising edge of this signal indicates a moment when data are

written to registers.
• /read – Clocking signal for reading operations. The rising edge of this signal indicates a moment when data are

read by host system.
• key/data – Chooses data or key to be written to registers. High state chooses keys.
• encr/decr – With this signal the host system can choose which operation to perform: encryption or decryprion.

High state means encryption.
• clock – Clocking signal for the entire circuit.
• reset – High state resets the device.
• enable – High state of this signal enables writing and reading from any register within the device. This signal

may be valuable in case of microprocessor systems. If not needed, it can be constantly driven to high state.
• busy – This signal is generated by the device. High state indicates encryption process in progress. Change from

high to low means that encryption has ended.

13

4.1.2 Addressing

The entire communication with the encrypting device is performed through registers, which are accessible
using appropriate register addresses. Fig. 11 describes the registers address space, divided into several segments.

0H

20H

28H

2CH

30H

Subkeys K[8...40]

Whitening
Subkeys K[0...7]

Data input [0...3]

Data output [0...3]

Subkeys S[0...1]

Address

32 bits

Figure 11 - Address space of memory used to store internal keys.

For each segment, we give only a beginning address. All registers within one segment are addressed
sequentially. For example, K[8] has address 0H, K[10] – 2H, and so on.

Data registers are divided into two groups: input and output. Although they could be accessed with the
same address, and distinguished by /write or /read signals, we have decided to separate them in such a way, that the
three least significant bits of data address are the same as three least significant bits of address of a corresponding
whitening key. It simplifies usage of whitening keys.

We have not defined any control register, because our interface is rich of controlling signals. However, this
may be a little uncomfortable in use, and in the future, implementation of a control register may be taken into
consideration.

14

4.1.3 Data and key flow

The following section describes the architecture of our interface. It is not necessary to learn exactly how it
works, but this knowledge is helpful in understanding the protocol described in the next section.

Twofish round - encryption & decryption

Memory for
odd keys:

K9, K11...K39

Memory for
even keys:

K8, K10...K38

Memory for
whitening keys:

K0...K7

Register S0

Register S1

Register R0_in Register R1_in Register R2_in Register R3_in

Register R0_out Register R1_out Register R2_out Register R3_out

data_bus[31..0]

Figure 12 - Data flow.

4.1.3.1 Subkeys
As shown in Fig. 12, the subkeys K0...K39 are kept in three distinct memories. During encryption, even and

odd keys from range K8...K39 are used simultaneously. Whitening keys K0...K7 may also be used at the same time.
This is the reason of placing them in different memories. Also, keys S0 and S1 are used during encryption, therefore,
we had to implement two registers for their storage. Such way of implementation is quite expensive in terms of used
CLBs, but even if we used the sequential structure of a Twofish round, we could basically save only 16 CLBs by
storing keys S0 and S1 in one memory.

4.1.3.2 Data flow
To increase the speed of encryption, we have implemented a pipelined structure for data flow. There are

two layers of registers: one on the input, and the other on the output of the round circuit. This structure allows
writing and reading data independently of encryption process. Obviously, it is possible to write or read from only
one register at a time. When the 32-bit input data word is written to the corresponding input register, this word is
XOR-ed with the corresponding whitening key. Similar XOR operation takes place during reading each 32-bit
output data word. Therefore, we need an access to only one whitening key at a time, and we may store all of these

15

keys in a common memory. Input and output whitening keys have to be exchanged during decryption. It requires
setting properly the encr/decr signal during the data transmission. Whitening keys are applied to the input data on
the fly, which is a little unusual, and may increase the minimum time of the transmission cycle.

NOTE: Interface implementation for other ciphers
We are going to use the same basic interface structure for all ciphers. Of course, for each cipher we will

customize this structure according to the specific conditions, nevertheless, our interface will always include at least
the following features:

1) Data and keys will be read and written through 32-bit wide bidirectional bus.
2) We will always use pipelined structure for data flow.
3) All subkeys will be computed off-chip, and stored in internal memories in such a way, that all subkeys

required during a single round will be available simultaneously within one clock cycle.

4.1.4 The transmission protocol

4.1.4.1 Writing keys and data to the circuit

address

data_bus

/write

/read

key/data

encr/decr

valid

valid

1 for key, 0 for data

1 for encryption, 0 for decryption

1

Figure 13 - Writing cycle.

Address bus should be first set to one of the addresses within the input register address space, as shown in
Fig. 13. After the address is stable, data bus should be set to the appropriate data or key value, and stay stable at least
until the rising edge of the /write signal. This rising edge indicates latching data in the selected input register.

The key/data signal should be set to the appropriate state, depending on what is going to be written to the
register: data or key. In fact, this signal is used to switch the address bus of internal memories between the external
address bus and an internal counter used during encryption. The encr/decr signal should be set in advance to a
proper state, depending on intended encryption or decryption process.

Once the keys and data are written to the circuit, they cannot be read, but can always be overwritten.
In case of data, writing to the register under address 2BH is a signal for the encrypting device that new data

block is already ready for encryption.

4.1.4.2 Reading data from the circuit

address

data_bus

/write

/read

key/data

encr/decr

valid

valid

0

1 for encryption, 0 for decryption

1

Figure 14 - Reading cycle.

16

Reading data is very similar to writing. Instead of /write, a /read signal is used to indicate reading cycle. Of
course, this time the encryption device drives data on the data_bus, therefore a host system should release the bus.
Data are driven on the data_bus as long as /read signal stays low.

4.1.5 Operation sequence performed by our device after start

The key to use the device efficiently is to understand what operations are performed after start signal
activation. This sequence is very simple:

1) Read data from input registers and store them inside the circuit round, set busy = 1
2) Perform encryption
3) Write encrypted data to output registers, and set busy = 0

There are two important conclusions, which should be taken into consideration:
1) Immediately after the busy signal becomes high the host may write next data.
2) When busy becomes low, encrypted data are available to read. It is important to notice that our device does

not wait for a host system, and previously encrypted data should be already read at the end of the next
encryption, otherwise they will be lost.

4.1.6 Operation sequence recommended for the host device

The pipelined structure used in our interface makes writing and reading data possible during processing
encryption. The sequence of operations looks as follows:

1) Write data

2) Write next data
3) Wait for busy = 0
4) Read encrypted data
5) Go to step 2.

17

4.2 The Twofish round circuit

Almost all elements of the Twofish round circuit are described directly in the Twofish documentation [1].
Therefore, we focus only on parts that are specific for hardware implementation. Additionally, most of the Twofish
building blocks are already described in previous sections.

The implementation of the Twofish round is shown in Fig. 15.

128-bit register

F - function

<<<1

>>>1

<<<1

>>>1

Figure 15 - Twofish round structure.

There is only one 128-bit wide register, which stores intermediate results of encryption. The entire circuit
has a feedback that permits data to circulate by repeating a single round computation multiple number of times. This
way, we are able to perform the entire encryption.

We have made also a small modification to the original Twofish structure, that enables encryption and
decryption to be performed using the same circuit. These additional components include two shaded multiplexers on
the right side of the schematic in Fig. 15. Please refer to section 1 and Fig. 4 for more information.

NOTE: The round circuit implementation for other ciphers
For all ciphers that have a round structure, we are going to adapt a similar circuit for encryption and

decryption. This circuit will have the following features:
1) At least one 128-bit wide register will be used to store intermediate results. This register will be placed at

the beginning of the round.
2) Only one round will be implemented, unless there will be some good reason to break this rule.
3) The feedback loop will be used to bring results of the round function back to the input of the round circuit.

18

5 The results of the Twofish implementation using Xilinx FPGA devices

VHDL (Very High Speed Integrated Circuit Hardware Description Language) was chosen as a language
used to describe Twofish implementation. VHDL is a standard language for hardware description and is supported
by computer aided design software of all major FPGA device vendors. It is a high-level language, which allows
describing circuit function without the need to specify the circuit structure. Although writing the VHDL code is very
easy, it is not guaranteed that this code will be optimal. The results substantially depend on the software used for
synthesis. Additionally, different ways of describing the same circuit produce slightly different results. Therefore,
writing a good code requires an in-depth knowledge of how VHDL is interpreted by a synthesizer. To optimize the
implementation, we have tried different kinds of description, and compared the results with our expectations (see
section 2).

Probably, the best way to write the most efficient code is to use vendor supported libraries. However, this
way of coding would make our design specific for a particular device family. Therefore, we have described the
entire round circuit, which is the core of our design, in pure VHDL’87 language. We expect that using library parts
could make our design faster and less area consuming. In the interface part, we have made an exception and used
library parts from the Xilinx LogiBLOX library. These library parts were necessary to describe memories used to
store cipher subkeys. Any other way of implementing these memories would dramatically increase the amount of
required area.

The majority of the designer’s time has been spent on creating the proper VHDL code, and on functional
simulation. We did it using mainly the Active-VHDL program provided by ALDEC Co. We have found this
program very convenient to work with VHDL, and to perform functional simulation. Our code was verified based on
test vectors provided in Twofish documentation [1]. The verified VHDL code was then synthesized and optimized
using FPGA Express. The obtained netlist was exported to the Xilinx Foundation Series 1.5 to create the
implementation. The Xilinx design environment was also used for timing simulation.

As target device we have chosen a family of XC4000XL. In most implementations, we have used the
following options:

In FPGA Express:
• Clock frequency: 50 MHz
• Speed grade: -09
• Slew rate: Slow
• Global buffer: Automatic, but in case of clock and reset signals: BUFGLS
• Hierarchy: Eliminate, but in case of subkey memories: Preserve
• Primitives: Optimize
• Operator Sharing: On
• Optimize for: Speed
• Effort: High

In Design Manager:
• Trim unconnected logic: on
• Replace logic to allow logic level reduction: on
• Generate 5-input functions: on
• CLB packing strategy: Fit device
• Pack CLB for: Structure
• Pack I/O registers/latches into IOBs: off
• Place & route effort level: Best result
• # of routing passes: auto
• # of delay-based cleanup passes: 0

19

5.1 Implemented parts

After analyzing all Twofish components in terms of their ability to be implemented in Xilinx FPGA
devices, as described in section 2, we also tried to verify whether our expectations are fulfilled or even exceeded by
Xilinx synthesis tools. Implemented parts included:

• q-permutations
• the MDS matrix
• the PHT transform
• the F-function
• full encrypting device in combinational version

5.2 Implementation of Twofish components

This section focuses on implementation of q-permutations, the MDS matrix and the PHT transform only.
The main purpose to implement Twofish main components separately was to answer the question: how much area
they require and how fast they are. To check how many CLBs are required, it is sufficient to implement particular
circuit “as is”. The more difficult is to measure the propagation delay through the circuit. All of the aforementioned
components implement internal functions, and their inputs are not originally connected to the external pins. The
delay introduced by external pins is significantly longer than the delay of interconnections among CLBs. To avoid
this effect, all circuits described in this section were tested in a configuration shown in Fig. 16.

reg1 reg2
Circuit
under
test

reg3 reg4
input
pins

output
pins

Figure 16 - Testing environment.

We have decided to use two levels of registers between inputs and outputs, because the first level (reg1 and
reg4) could be placed in IOB elements, and in this case the paths between CLBs and registers would be long. The
propagation delay is measured as the time interval between the moment when the stable value appears at the outputs
of the register reg2, and the time, when the proper stable value appears on the inputs to the register reg3. In case of
sequential designs, the setup time of reg3 and the propagation delay through the reg2 have to be taken into account.
In Xilinx devices, the setup time is equal 0 ns if the register is placed in the same CLB as proceeding combinational
logic; otherwise it does not exceed 2 ns. The delay caused by reg2 is about 3-4 ns as shown in Fig. 17-19 (the reg2
output is shown always directly under the clock signal). In case of the combinational design, these additional delays
need to be taken into account only once for the entire round function.

5.2.1 q – permutation

The implementation of the q-permutation met our expectations by taking 16 logic cells. The propagation
time is shown in Fig. 17, and is 9.6 ns. In sequential design the propagation delay, measured from rising edge of
clock is 13.3 ns. Additionally, the setup time for reg3 must be considered. The implementation report, generated
automatically by synthesizer states that the minimum safe clock period is 13.8 ns.

Figure 17 - Timing simulation of the q-permutation.

20

5.2.2 MDS matrix

In case of the MDS matrix implementation, the Xilinx compiler made it in a completely different way that
we had expected. Our analysis shows that it should be the fastest function, but in implementation it appeared to be
not much faster than the q-permutation, causing the delay of 9.5 ns (13.5 ns with the reg2 propagation delay). The
compiler realized it using only 48 logic cells (we expected 52), but, on the other hand, it has changed it into a
multilevel structure. We tried several different ways of describing this matrix, but the result still was the same.
Probably, the only way to enforce our implementation would be to use library components.

Figure 18 - Timing simulation of the MDS matrix.

5.2.3 PHT transform

The PHT transform was implemented using carry-chain feature of Xilinx CLBs, and it took 34 CLBs. We
expected a long delay that is needed for the signal propagation through the entire carry-chain, but Xilinx FPGA
seems to be very fast, and it took only 6.8 ns (10.8 ns, taking into account propagation delay through the reg2).
Surprisingly, the minimum clock period reported by the synthesizer is 14.7 ns.

Figure 19 - Timing simulation of the PHT transform.

5.2.4 Summary of main components implementations

q-permutation MDS PHT
Expected delay
(# of CLB levels)

4 2 carry-chain

Actual delay (ns) 9.6* 13.3** 9.5* 13.5** 6.8* 10.8**
Expected size (# CLBs) 16 52 32
Actual size (# CLBs) 16 48 34

* with the propagation time through reg2
** without the propagation time through reg2

5.3 Implementation of the F-function and full round

The F-function is a core part of the entire round circuit, and it determines the encryption speed. Moreover,
the key schedule is based on the same function. Therefore, the amount of area consumed by the full implementation
of Twofish can be estimated as twice the area of the F-function implementation. This estimate does not take into
account the amount of area used by the RS matrix.

We have implemented two versions of the F-function: sequential and fully combinational. Both versions of
F-functions were used for implementation of the round circuit. In the sequential version, we used six register layers
situated at the outputs of the:

• 1st level of q-permutations,
• 2nd level of q-permutations,
• 3rd level of q-permutations,

21

• MDS matrix,
• PHT transform,
• subkey adders.

For the combinational version of the F-function, the required amount of CLBs is 605, which matches
perfectly with our expectations. The corresponding entire round function implementation takes 705 logic cells. The
sequential version of the F-function takes 613 CLBs, and the entire round implementation fits in 728 logic cells.

5.4 Implementation of the fully functional encrypting device

The implementation of the Twofish encrypting device consists of the round function and the interface
described in section 4. We have implemented a purely combinational and a sequential version of the entire circuit,
with different optimization options. The smallest device that contains the entire circuit is XC4028XL. As a target
package for this device we used HQ208.

Version Combinational Sequential
Optimized for Speed Area Speed Area
Routing* Best Default Best Default Best Default Best Default
Size (# CLBs) 911 888 920 926
Max. clock rate (MHz) 10.7 9.1 10.6 9.1 33 28.5 35.9** 27.9
of clock cycles per data block 16 112
Maximum throughput (Mbit/s) 85.6 72.8 84.8 72.8 37.7 32.6 41.0 31.9

* Best: # of routing passes: 1000
of delay-based cleanup passes: 5

 Default: options are set as listed in section 5.
** This is the most surprising result, but we have checked all options and we are certain that the

optimizations for speed and area were not interchanged.

As we expected, the combinational version of the implementation is faster than the sequential version. The
throughput of the sequential implementation is surprisingly low. According to the results obtained for individual
Twofish components, we have expected the maximum clock rate at a level of 50 MHz. Actually, the clock rate did
not exceed the rate of 36 MHz, resulting in the throughput lower by 50% compared to the combinational version. It
may be the result of poor routing, because the design takes approximately 90% of area available in the XC4028
device.

Although, the sequential implementation is slower, it may be still considered in case of the ECB cipher
mode or interleaved modes, because, for these modes, the computations can be performed for many data blocks
simultaneously. Obviously, this solution requires implementing additional FIFO buffers instead of registers at the
input and output of the circuit, and one similar FIFO buffer on the left half of the data inside the round.
Implementing these buffers using flip-flops would be very expensive, but instead, we can use the fact that a Xilinx
CLB can be configured as a 16 x 1 dual-port RAM. Therefore, each required 32-bit-wide FIFO buffer would take
only 32 logic cells. Using pipelined mode for our particular sequential design (seven levels of registers), would give
the throughput of 263.9 Mbit/s. One FIFO buffer can store up to 16 data blocks, therefore, the throughput may be
further increased by dividing the circuit into more register levels. This operation does not require any additional
hardware.

22

Summary

We have designed the hardware implementation of Twofish, one of the leading candidates to the new
Advanced Encryption Standard (AES). Twofish is a symmetric-key block cipher with a 128-bit input/output block,
and key sizes 128, 192, and 256 bits. Special assumptions regarding our implementation are:

• the key size is limited to 128 bits;
• internal keys are generated off-chip, and loaded to the internal FPGA memory before the encryption or

decryption starts;
• a general interface of our own design, based on the 46-bit bus with 32 data lines, is used to exchange

data and keys with the host computer.
We have developed the VHDL’87 description of Twofish, and verified its correctness by functional

simulation, using Active-VHDL simulator from Aldec, Inc. Test vectors, used for verification, were generated based
on the C reference code provided by the inventors of the cipher [1]. The VHDL code was mapped into Xilinx FPGA
devices, using Xilinx Foundation Series v. 1.5.

The circuit was optimized for maximum speed. The number of CLBs necessary to implement the entire
circuit is 911, with 705 CLBs used for the main encryption/decryption block, and the remaining cells used for the
input/output interface, and storage of internal keys. The smallest Xilinx FPGA device able to implement the circuit
is XC4028, with the maximum number of CLBs equal to 1024, and the equivalent number of logic gates equal to
28,000.

The maximum clock frequency obtained from the timing simulation for combinational implementation is
10.7 MHz. With 16 cipher rounds, each executed within one clock cycle, this maximum clock frequency
corresponds to the encryption and decryption rate of 128·10.7/16 = 85.6 Mbit/s.

23

6 Bibliography

1. Twofish: A 128 bit Block Cipher; Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
Niels Ferguson; 15 June,1998
http://www.counterpane.com/twofish.html

2. Performance Comparison of the AES Submissions; Bruce Schneier, John Kelsey, Doug Whiting,
 David Wagner, Chris Hall, Niels Ferguson; December 18,1998
 http://www.counterpane.com/twofish.html

3. Twofish Technical Report #3; Doug Whiting, Bruce Schneier; December 2,1998
 http://www.counterpane.com/twofish.html

4. Xilinx Documentation, XC4000E and XC4000X Series Field Programmable Gate Arrays;
 January 29,1999

http://www.xilinx.com

24

Appendix - List of source files

twofish.vhd – main file containing description of the interface part, and the instantiation of the round part.
round.vhd – the round circuit; main register, encryption and decryption, and the instantiation of the F-

function.
f_function.vhd – two h-functions, one PHT transform, and two subkey adders.
pht_transf.vhd – the PHT transform.
h_function – instantiation of the S-boxes and the MDS matrix.
mds.vhd – multiplication used in the MDS matrix.
mul_5B.vhd – multiplication by 5B in the Galois field GF(28).
mul_EF.vhd – multiplication by EF in the Galois field GF(28).
s_boxes.vhd – four S-boxes 0...3 formed from q-permutations.
perm_qx.vhd – appropriate permutation q0 or q1.
s_box_tx_qi.vhd – contents of the appropriate S-box t0...t3 of permutation q0 or q1.

vectors.txt – test vectors.

